Transfert de chaleur par conduction

Séances n°7-8

Plan des séances n°7-8

- Transfert de chaleur par conduction
 - Caractéristiques fondamentales
 - Equation de la chaleur
 - Transmission de la chaleur en régime permanent
- Exercices d'application
 - Mur multicouche
 - Chauffage par plancher chauffant
 - Tuyauterie isolée
 - Ailette de refroidissement

Rappel

•Quels sont les trois modes de transfert thermique?

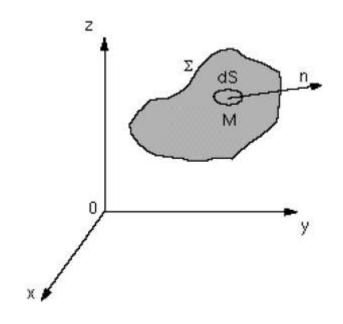
La conduction

- L'énergie se propage par contact direct sans déplacement de molécules
 - →Egalisation des températures dans les matériaux
- Si les températures sont imposées en différents points par apport ou évacuation de l'énergie
 - → Ecoulement continu de la chaleur du chaud vers le froid

Loi de Fourrier

- Considérons un milieu solide D dans lequel une surface dS est orientée par sa normale unitaire \vec{n}
- La quantité de chaleur d²Q qui traverse la surface *dS* pendant l'intervalle de temps dt dans le sens de la normale \vec{n} est donnée par la **loi de Fourrier**:

$$d^2Q = -\lambda . \overrightarrow{grad}T. \overrightarrow{n}. dS. dt$$



Flux de chaleur (W) :
$$d\Phi = \frac{d^2Q}{dt} = -\lambda . \overrightarrow{grad}T.\overrightarrow{n}. dS$$

Densité de flux de chaleur (W/m²) : $\varphi = \frac{d\Phi}{dS} = -\lambda . \overrightarrow{grad}T.\overrightarrow{n}$

 λ : conductivité thermique du matériau

Conductivité thermique

- Propriété thermophysique des matériaux
 - J/(s.m.K) ou W/(m.K)
- λ Dépend de la direction (corps anisotrope), de la température, de la pression interstitielle de gaz ou vapeurs occlus dans des matériaux poreux...

Substances	λ [W.m ⁻¹ .°C ⁻¹]
Gaz à la pression atmosphérique	0,006 - 0,15
Matériaux solides isolants (laine de verre, liège)	0,025 - 0,18
Liquides non métalliques	0,075 - 0,60
Matériaux non métalliques (brique, pierre à bâtir, béton, bois)	0,10 - 2,2
Alliages métalliques	12 - 100
Métaux purs	45 - 350

Equation générale de la chaleur

L'expression de l'équation de la chaleur:

$$\lambda . \Delta T + \overrightarrow{grad} \lambda . \overrightarrow{grad} T + p = \rho . c_v . \frac{\partial T}{\partial t}$$

- $\blacksquare \Delta T$ le laplacien de la température
 - En coordonnées cartésiennes $\Delta T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$
 - En coordonnées cylindriques $\Delta T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\partial^2 T}{\partial z^2}$

Si symétrie axiale
$$\Delta T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

Equation générale de la chaleur Cas particuliers

■ \(\lambda\) ne dépend que de la température :

$$\lambda. \Delta T + \frac{\partial y}{\partial x} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 + \left(\frac{\partial y}{\partial z} \right)^2 \right] + p = \rho. c_v. \frac{\partial T}{\partial t}$$

 $\blacksquare \lambda$ ne varie pas avec la température :

$$\lambda . \Delta T + p = \rho . c_v . \frac{\partial T}{\partial t}$$

 $\blacksquare \lambda$ ne varie pas avec la température et pas de dégagement de chaleur interne:

$$\lambda . \Delta T = \rho . c_{v} . \frac{\partial T}{\partial t} \quad \Rightarrow \quad a . \Delta T = \frac{\partial T}{\partial t}$$

Diffusivité thermique (m²/s) :
$$\alpha = \frac{\lambda}{\rho . c_v}$$

Equation générale de la chaleur Cas particuliers

T ne dépend plus du temps :

$$\lambda . \Delta T + p = 0$$

■ T ne dépend plus du temps et pas de dégagement de chaleur interne:

$$\Delta T = 0$$

Conditions aux limites spatio-temporelles

Equation aux dérivées partielles, linéaire, du 2nd ordre avec une infinité de solutions T=f(x,y,z,t); nécessité de connaître:

Condition initiale

• à *l'instant* t = 0, $T_0 = f(x, y, z, 0)$

Conditions aux limites spatio-temporelles

Conditions aux limites

■ La température imposée sur la surface S, **Problème de DIRCHLET**:

$$T_S = f(M_S, t)$$

■ La densité imposée sur le pourtour S, Problème de NEUMANN:

$$\varphi = -\lambda \left(\frac{dT}{dn}\right)_{S} = f(m_{S}, t)$$

Transfert linéaire à la surface S, Problème mixte ou de FOURRIER:

$$\varphi_c = (h_c + h_r)(T_S - T_m)$$

$$avec: T_m = \frac{h_c.T_f + h_r.T_p}{h_c + h_r}$$

 h_c : coefficient d'échange superficiel par convection [W/(m^2 . C)]

 h_r : coefficient d'échange superficiel par rayonnement [W/(m^2 . C)]

 T_m : Température moyenne pondérée de la température du fluide environnant T_f et de la température moyenne T_p des surfaces environnantes [\mathcal{C}]

Cas particulier: le mur

- Matériaux homogène et isotrope en régime permanant sans source internet
 - Conditions aux limites de type Dirichlet (T_{S1} et T_{S2}) constants)
 - Epaisseur e
 - Surface infinie ⇔ Problème unidimensionnel ⇔ On néglige les effets de bord

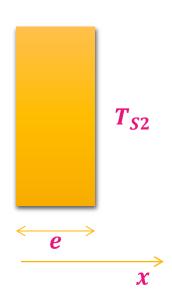
$$\Delta T = 0 = \frac{d^2T}{dx^2}$$

$$T = ax + b \Rightarrow T = \frac{T_{S2} - T_{S1}}{e} + T_{S1}$$

- ⇒ Répartition de température indépendante du matériau
- Flux surfacique dans le matériau

$$lacktriangledown \varphi = -\lambda . \overrightarrow{grad}T. \overrightarrow{n}$$

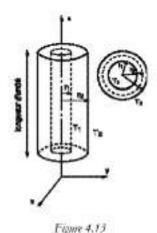
$$\blacksquare R_{th} = \frac{e}{\lambda}$$



 T_{S1}

Cas particulier: le cylindre

Sans puissance interne, en régime permanant et matériau homogène



 Sans puissance interne, en régime permanant et matériau homogène

$$\Delta T = 0$$
 et $\Delta T = \frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} = 0$

$$\Delta T = \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right)$$

 $\Delta T = \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right)$

$$T = T_I - \frac{T_I - T_2}{\ln \frac{r_1}{r_2}} \ln \frac{r}{r_1}$$

$$\Phi = -2\pi\lambda \frac{T_1 - T_2}{\ln \frac{r_1}{r_2}} = 2\pi\lambda \frac{T_1 - T_2}{\ln \frac{r_2}{r_1}}$$

$$R_{th} = \frac{1}{2\pi\lambda} Ln\left(\frac{r_2}{r_1}\right)$$

 $T = \alpha \ln r + \beta$.

=> Equation de Fourier:

Résistance thermique

Géométrie plane : la résistance thermique d'une couche plane d'épaisseur e:

$$R_{th} = \frac{e}{\lambda}$$

Géométrie cylindrique : la résistance thermique d'un cylindre délimitée par les isothermes de rayons r₁ et r₂:

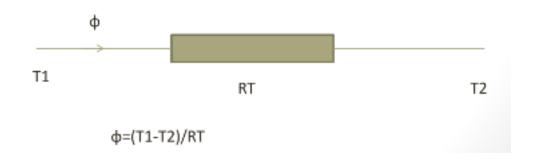
$$R_{th} = \frac{1}{2\pi\lambda} Ln\left(\frac{r_2}{r_1}\right)$$

 Géométrie Sphérique : la résistance thermique d'une sphère délimitée par les isothermes de rayons r₁ et r₂:

$$R_{th} = \frac{1}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Analogie électrique

Electricité	Conduction
Différence de potentiel en Volt	Différence de température
Courant électrique en Amper	Flux énergétique en W
Résistance en Ohm	Résistance thermique en K/W
Capacité électrique	Capacité électrique en J/K



Exercices d'application

Mur multicouche

Chauffage par plancher chauffant

Tuyauterie isolée

Ailette de refroidissement

Mur multicouche

- A. Une paroi de bâtiment est constituée de 4 couches. Le régime permanent est établi. Le problème est 1D. Les matériaux sont homogènes et isotropes. Conditions aux limites de type Dirichlet.
- B. $T_{ext} = -10$ ° C. $T_{int} = +20$ ° C
- C. Calculez la résistance thermique surfacique et la densité de flux
- D. Calculez à nouveau ces valeurs en considérant les coefficients d'échanges surfaciques h_{int} = 10 W.m⁻².° C⁻¹ et h_{ext} = 15 W.m⁻².° C⁻¹.
- E. Calculez à nouveau ces valeurs en considérant la paroi non isolée.

	Épaisseur [cm]	Conductivité thermique [W.m ⁻¹ .K ⁻¹]
Extérieur		
1. Enduit mortier de ciment	1	1,15
2. Béton lourd de granulats	20	1,75
3. Laine de verre	10	0,04
4. Enduit plâtre	1	0,35
Intérieur		

Mur multicouche

A. Conduction « pure » (sans coefficients surfaciques) :

$$R = \sum_{i=1}^{4} \frac{e_i}{\lambda_i} = 2,65 \ m^2 \cdot {}^{\circ}C \cdot W^{-1}$$

$$\varphi = \frac{\Delta T}{R} = 11,3 \ W \cdot m^{-2} \qquad U = 0,38W \cdot m^{-2} \cdot {}^{\circ}C^{-1}$$

B. Grandeurs globales (avec coefficients surfaciques):

$$R = \sum_{i=1}^{4} \frac{e_i}{\lambda_i} + \frac{1}{h_{int}} + \frac{1}{h_{ext}} = 2,82 \quad m^2 \cdot C \cdot W^{-1}$$

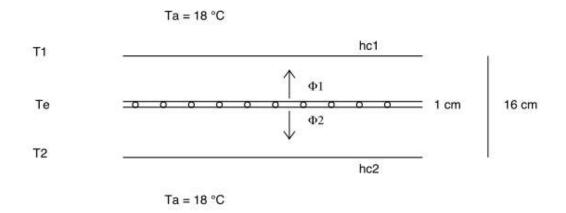
$$\varphi = \frac{\Delta T}{R} = 10,6 \quad W \cdot m^{-2} \qquad U = 0,35W \cdot m^{-2} \cdot C^{-1}$$

Paroi non isolee:

$$R=0,32 m^2. °C.W^{-1}$$

 $\varphi=94,0 W.m^{-2} U=3,13 W.m^{-2}. °C^{-1}$

A. Un système de chauffage électrique par plancher est constitué de câbles électriques chauffants (assimilésà une plaque de 1 cm d'épaisseur) noyés dans une dalle de béton (d'une épaisseur totale de 16 cm) de conductivité thermique 1,2 W/m.° C. La nappe électrique chauffante est à égale distance de la surface supérieure et de la surface inférieure.



A. Le flux de chaleur, par unité de surface, créé par le câble électrique est de 100 W/m². Ce flux se partage entre un flux ascendant (chauffage par le plancher) et un flux descendant (chauffage par le plafond). Les coefficients d'échange superficiel par convection et sont respectivement $hc_1 = 5.6 \text{ W/m}^2$.° C pour la surface supérieure et hc₂ = 3,6 W/m².° C pour la surface inférieure. La température ambiante T_a de l'air de chaque côté du plancher est égale à 18° C. De plus, la température de l'élément chauffant T_e est supposée uniforme.

A. Calculez:

- Les conductances globales U₁ (partie supérieure) et U₂ (partie inférieure) de la zone comprise entre la nappe chauffante et l'ambiance
- 2. La température de la nappe chauffante Te
- 3. Le flux ascendant et le flux descendant (par unité de surface)
- Les températures superficielles T₁ et T₂

 $U_2=2.94 \text{ W.m}^{-2}.^{\circ}C^{-1}$

Chauffage par plancher chauffant

$$\frac{1}{U_{I}} = \frac{1}{h_{cI}} + \frac{x_{I}}{\lambda_{I}} \qquad U_{I} = 4,15 \quad W.m^{-2} \gtrsim C^{-1}$$

$$T_{e} = T_{a} + \frac{\Phi}{U_{I} + U_{2}} = 32,1^{\circ}C$$

$$\Phi_{I} = U_{I}(T_{e} - T_{a}) = 58,5W.m^{-2}$$

$$\Phi_{2} = 41,5W.m^{-2}$$

$$\Phi_{I} = h_{cI}(T_{I} - T_{a}) \qquad T_{I} = 28,5^{\circ}C$$

$$T_{2} = 29,5^{\circ}C$$

A. La nappe électrique chauffante est maintenant à une distance x₁ de la surface supérieure, x2 de la surface inférieure. Les coefficients d'échange superficiel globaux (convection et rayonnement) sont respectivement $h_1 = 10,6 \text{ W/m}^2$.° C pour la surface supérieure et $h_2 = 8,6 \text{ W/m}^2$.° C pour la surface inférieure. La température superficielle du sol est égale à $T_1 = 24$ ° C.

B. Calculez:

- Le flux ascendant et le flux descendant (par unité de surface)
- 2. La température superficielle T₂
- La température de la nappe chauffante T_e 3.
- 4. La valeur de la distance x₁

$$\Phi_{1} = h_{1}(T_{1} - T_{a}) \qquad \Phi_{1} = 63,8W.m^{-2} \qquad \Phi_{2} = 36,2W.m^{-2}$$

$$\Phi_{2} = h_{2}(T_{2} - T_{a}) \qquad T_{2} = 22,2^{\circ}C$$

$$\Phi_{1} = \frac{\lambda}{x_{1}} (T_{e} - T_{1}) \qquad \Phi_{2} = \frac{\lambda}{0,15 - x_{2}} (T_{e} - T_{2})$$

$$T_{e} = 25,7^{\circ}C \qquad x_{1} = 3,3cm$$

A. L'alimentation électrique de la nappe est interrompue. Calculez l'énergie calorifique (par m2 de dalle) restituée à l'ambiance au bout d'un temps infini.

A. L'alimentation électrique de la nappe est interrompue. Calculez l'énergie calorifique (par m2 de dalle) restituée à l'ambiance au bout d'un temps infini.

$$Q = \rho c \int_{0}^{x_{1}} (T_{1}(x) - T_{a}) dx + \rho c \int_{0}^{x_{2}} (T_{2}(x) - T_{a}) dx$$

$$T_{1}(x) = T_{e} - \Phi_{1} \frac{x}{\lambda} \qquad T_{2}(x) = T_{e} - \Phi_{2} \frac{x}{\lambda}$$

$$Q = 1.95MJ.m^{-2}$$

Tuyauterie isolée

- A. Une canalisation est constituée d'une tuyauterie (de rayons r_i et r_e) entourée d'un isolant (de rayon r). Le contact est parfait entre la tuyauterie et l'isolant. Les matériaux sont homogènes et isotropes. Aux bornes du systèmes, les coefficients surfaciques d'échange sont h_i et h_e.
- B. Déterminez l'expression de la résistance thermique par unité de longueur.
- C. Évaluez la variation de la résistance thermique avec r.
- D. Calculez la valeur de r correspondant à l'extremum de R.

Tuyauterie isolée

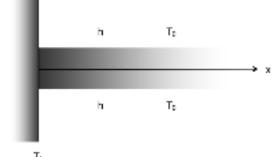
$$R = \frac{1}{2\pi r_i h_i} + \frac{1}{2\pi \lambda_t} Ln\left(\frac{r_e}{r_i}\right) + \frac{1}{2\pi \lambda_i} Ln\left(\frac{r}{r_e}\right) + \frac{1}{2\pi r h_e}$$

$$\frac{dR}{dr} = \frac{1}{2\pi r} \left(\frac{1}{\lambda_i} - \frac{1}{h_e r}\right)$$

Valeur minimale de la résistance si : $r_e \leq \frac{\lambda_i}{h}$

Dans le cas d'un isolant de mauvaise qualité, la résistance décroît avant d'augmenter en fonction de l'épaisseur d'isolant

- A. Un corps C à température uniforme constante T₁ est refroidi par une ailette placée dans un milieu ambiant à température constante T₀, avec lequel elle échange de la chaleur (coefficient d'échange h). À l'intérieur de l'ailette, la température est uniforme dans une section S (isothermes planes perpendiculaires à l'axe Ox).
- B. L'ailette est caractérisée par la conductivité de son matériau, son périmètre p, et sa section droite S. L'ailette est de longueur infinie.
- 1. En considérant une tranche dx de l'ailette, définissez les différents flux $d\Phi_i$ intervenant dans le bilan de cette tranche dx.
- 2. De ce bilan, tirez le profil de température T(x) dans l'ailette
- Déterminez l'efficacité E de l'ailette, définie comme le rapport entre le flux évacué par l'ailette et le flux évacué en l'absence d'ailette (mêmes conditions d'échange h).



С

$$d\Phi_{I} = -\lambda S \left(\frac{dT}{dx}\right)_{x} d\Phi_{2} = -\lambda S \left(\frac{dT}{dx}\right)_{x+dx} d\Phi_{3} = hp(T(x) - T_{0}) \cdot dX$$

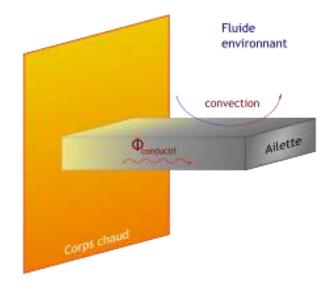
$$\lambda S \left(\left(\frac{dT}{dx}\right)_{x+dx} - \left(\frac{dT}{dx}\right)_{x}\right) = hp(T(x) - T_{0}) \cdot dX$$

$$T = T_{0} + (T_{I} - T_{0}) e^{-\sqrt{\frac{hp}{\lambda S}} x}$$

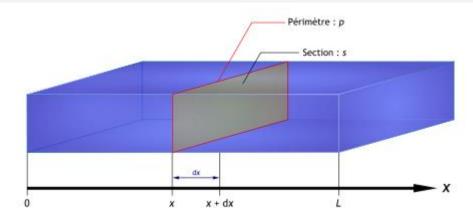
$$\Phi_{ail} = -\lambda S \left(\frac{dT}{dx}\right)_{x=0} = \sqrt{hp\lambda S} (T_1 - T_0)$$

$$\Phi_{abs} = hS(T_1 - T_0)$$

$$E_{ff} = \frac{\Phi_{ail}}{\Phi_{abs}} = \sqrt{\frac{\lambda p}{hs}}$$



https://fr.wikiversity.org/wiki/Conduction_thermique/Annexe/Ailette



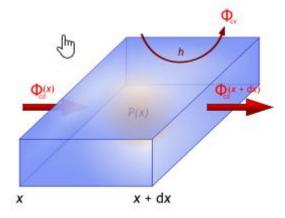
On réalise le bilan énergétique d'une section dx.

- Φ_x: flux conductif en x;
- Φ_{x+dx}: flux conductif en x + dx;
- Φ_{cv} : perte convective entre x et x + dx ;
- h : coefficient d'échange convectif ;
- s : section de l'ailette ;
- p : périmètre de l'ailette .

$$\underbrace{\overline{\Phi_x - \Phi_{x+\mathrm{d}x}}}_{\mathrm{Bilan\ conductif}} + \underbrace{Puissance\ g\acute{e}n\acute{e}r\acute{e}e}_{P(x)s\ \mathrm{d}x} = \underbrace{\overline{hp\,\mathrm{d}x\,[T(x)- \hspace{-0.5ex}\downarrow\hspace{-0.5ex}T_f]}}_{\mathrm{Perte\ convective}}$$

Le bilan conductif s'exprime grâce à la loi de Fourier:

$$\left[-krac{\mathrm{d}T(x)}{\mathrm{d}x}igg|_x s
ight]-\left[-krac{\mathrm{d}T(x)}{\mathrm{d}x}igg|_{x+\mathrm{d}x} s
ight]+P(x)s\,\mathrm{d}x=hp\,\mathrm{d}x\left[T(x)-T_f
ight]$$



$$rac{\mathrm{d}T(x)}{\mathrm{d}x}igg|_{x+\mathrm{d}x}-rac{\mathrm{d}T(x)}{\mathrm{d}x}igg|_x \ +P(x)s=hp\left[T(x)-T_f
ight]$$

La section dx est infiniment petite donc : $\mathrm{d}x \to 0$

$$rac{\mathrm{d}^2 T(x)}{\mathrm{d}x^2} - rac{hp}{ks}\left[T(x) - T_f
ight] = -rac{P(x)}{k}$$

$$rac{\mathrm{d}^2 T(x)}{\mathrm{d}x^2} - rac{hp}{ks} \left[T(x) - T_f
ight] = 0$$

On définit m le paramètre de l'ailette : m^2

https://fr.wikiversity.org/wiki/Conduction_thermique/Annexe/Ailette

Equation de l'ailette

$$rac{\mathrm{d}^2 T(x)}{\mathrm{d}x^2} - m^2 \left(T(x) - T_f
ight) = 0$$
 où :

- m le paramètre de l'ailette : $m^2 = \frac{hp}{ks}$
- T_f est la température du fluide environnant

L'hypothèse de flux mono-dimensionnel faite au début du calcul est valide si le nombre de Biot est petit devant 1 (par exemple <0,1).

Le nombre de Biot est ici défini par: $Bi = rac{\hbar s}{k p}$

On pose un changement de variable : $\theta(x) = T(x) - T_f$

L'équation devient :

$$rac{\mathrm{d}^2 heta(x)}{\mathrm{d}x^2}-m^2 heta(x)=0$$

Solution de la forme :

$$\theta(x) = Ae^{-mx} + Be^{mx}$$

A et B sont deux constantes d'intégration qui sont identifiées avec deux conditions aux limites.

https://fr.wikiversity.org/wiki/Conduction_thermique/Annexe/Ailette

Efficacité et rendement d'une ailette

· Efficacité d'une ailette :

$$\eta_{
m eff} = rac{{
m flux\ evacu\'e\ par\ l'ailette}}{{
m flux\ qui\ serait\ evacu\'e\ sans\ l'ailette}}$$

Rendement d'une ailette :

$$\eta_{\mathrm{rd}} = rac{\mathrm{flux}\; \mathrm{evacu\'e}\; \mathrm{par}\; \mathrm{l'ailette}}{\mathrm{flux}\; \mathrm{qui}\; \mathrm{serait}\; \mathrm{evacu\'e}\; \mathrm{par}\; \mathrm{une}\; \mathrm{ailette}\; \mathrm{parfaite}}$$

https://fr.wikiversity.org/wiki/Conduction thermique/Annexe/Ailette

Cas d'une ailette thermiquement infinie

Une ailette est dite thermiquement infinie quand la température au bout de l'ailette est considérée comme égale à la température du fluide qui entoure l'ailette. (Condition aux limites de première espèce)

Conditions aux limites :

• en x = 0 :
$$T(x) = T_0$$

• en x = L :
$$T(x) = T_f$$

Avec le changement de variable $heta(x) = T(x) - T_f$ les conditions aux limites deviennent :

• en x = 0 :
$$\theta(x) = \theta_0 = T_0 - T_f$$

• en x = L :
$$\theta(x) = 0$$

Résolution avec : $\theta(x) = Ae^{-mx} + Be^{mx}$

en x = L :
$$Ae^{-mL} + Be^{mL} = 0$$

Thermiquement infinie donc $e^{-mL}
ightarrow 0$

Ainsi:
$$B=0$$

et
$$A = T_0 - T_f$$

On obtient:
$$\theta(x) = (T_0 - T_f)e^{-mx}$$

En résolvant l'équation du second degrés avec la nouvelle solution ($heta(x)=(T_0-T_f)e^{-mx}$)

On peut obtenir la Résistance thermique de l'ailette de longueur infini:

qui est:
$$Ra = \frac{1}{\sqrt{hp.\,ks}}$$