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Interest of the work 

Since the 1950’s, scientists have studied the stability of elastic systems. Depending on the nature of the 

loading, elastic systems exhibit divergence and flutter modes of instability. Divergence is a static instability 

which occurs when the static aerodynamic effects counteract the torsional stiffness of the structure. In this 

case, the complex conjugate roots associated with the fundamental frequency becomes equal to zero. Flutter 

is a dynamic aeroelastic instability characterized by sustained oscillation of structure arising from interaction 

between the elastic, inertial and aerodynamic forces acting on the body. In this case, the roots associated with 

two consecutive natural frequencies become equal. 

Many studies of cantilevered structures with a static moment applied to its free end have been conducted, 

but the stability characteristics of a cantilever beam with a terminal dynamic moment did not have been 

considered prior to the article. That’s why the authors study the stability characteristics of a cantilever beam 

subjected to a dynamic moment at its free end using both theory and experiments. To do this, they assumed 

the terminal moment as being proportional to the slope or curvature of the beam at some points along its 

length.  

Resolution process 

The structure considered is the cantilevered Euler-Bernoulli beam of length L and uniform cross-sectional area 

A which its free end is subjected to a dynamic bending moment M. This bending moment is produced by an 

actuator mounted at the free end of mass m and mass moment of inertia J. They made the hypothesis of small 

deformations so the equation of motion of the beam and its boundary conditions are: 𝐸𝐼𝑦′′′′ + 𝜌𝐴𝑦̈ = 0 𝑦(0, 𝑡) = 0, 𝑦′(0, 𝑡) = 0, 𝐸𝐼𝑦′′(𝐿, 𝑡) + 𝐽𝑦̈′ = 𝑀, 𝐸𝐼𝑦′′′(𝐿, 𝑡) = 𝑚𝑦̈(𝐿, 𝑡) 
They chose to do a change of variables to have a non-dimensional equation 

𝑣 = 𝑦𝐿 , 𝑢 = 𝑥𝐿 , 𝜏 = 𝑡√ 𝐸𝐼𝜌𝐴𝐿4 

𝑣′′′′(𝑢, 𝜏) + 𝑣̈(𝑢, 𝜏) = 0 𝑣(0, 𝜏) = 0, 𝑣′(0, 𝜏) = 0, 𝑣′′(1, 𝜏) + 𝜂𝑣̈′(1, 𝜏) = 𝑀̅, 𝑣′′′(1, 𝜏) = 𝜇𝑣̈(1, 𝜏) 
Where 



𝑀̅ ≜ 𝑀𝐿𝐸𝐼 , 𝜇 ≜ 𝑚𝜌𝐴𝐿3 , η ≜ 𝐽𝜌𝐴𝐿3 

 
Figure 1 Cantilever beam with a tip mass and a terminal dynamic moment 

Two cases were considered: The terminal moment M is proportional to the slope of the beam and the 

terminal moment M is proportional to the curvature of the beam. 𝑀 = 𝑀𝑠 ≜ 𝐶𝑠𝑦′(𝑥̂, 𝑡) ∶ 𝑠𝑙𝑜𝑝𝑒 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑀 = 𝑀𝑐 ≜ 𝐶𝑐𝑦′′(𝑥̂, 𝑡) ∶ 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
Where 𝑥 is the point where the slope or the curvature is measured, and where 𝐶𝑠 and 𝐶𝑐 are proportional 

constants. 

Using non-dimensional variables, we have 𝑀̅ = 𝑀𝑠̅̅ ̅̅ ≜ 𝐶𝑠̅̅̅𝑣′(𝛼, 𝜏), 𝐶𝑠̅̅̅ ≜ 𝐶𝑠𝐿𝐸𝐼 ∶ 𝑠𝑙𝑜𝑝𝑒 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑀̅ = 𝑀𝑐̅̅ ̅̅ ≜ 𝐶𝑐̅̅ ̅𝑣′′(𝛼, 𝜏), 𝐶𝑐̅̅ ̅ ≜ 𝐶𝑐𝐸𝐼 : 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
Where 𝛼 ≜ 𝑥𝐿 ∈ (0,1] denotates the point where the slope or the curvature is measured. 

In order to solve the problem, the authors used analytical and numerical elements.  

Analytical solution 

The authors used a variable separation, 𝑣(𝑢, 𝜏) = 𝑈(𝑢)𝑇(𝜏), to get solutions of the form 𝑇(𝜏) = 𝐴𝑐𝑜𝑠(𝜔̅𝜏) + 𝐵𝑠𝑖𝑛(𝜔̅𝜏) 𝑈(𝑢) = 𝑃1𝑒𝛽𝑢 + 𝑃2𝑒−𝛽𝑢 + 𝑃3𝑒𝑖𝛽𝑢 + 𝑃4𝑒−𝑖𝛽𝑢 

Where 𝜔̅ ≜ 𝛽2. A and B are constants that can be obtained from initial conditions and the P’s are constants 

that can be obtained from the boundary conditions. 

The non-dimensional frequencies 𝜔̅ can be obtained by solving the transcendental characteristic equations 

which results from the boundary conditions. Each solution of 𝛽 is a unique mode shape. By solving the 

problem, they determined the critical stability points because the terminal moment is a boundary condition. 

Numerical solution 

The authors used the Galerkin method to solve the problem. They supposed the solution of the equation of 

motion of the beam to be of the form 



𝑣(𝑢, 𝜏) =∑𝑎𝑖(𝜏)𝜑𝑖(𝑢)𝑁
𝑖=1  

Where N is the number of terms of approximation (N=10), 𝜑𝑖(𝑢) the modes that satisfy the geometric 

boundary conditions and 𝑎𝑖(𝜏) the modal amplitudes. Using that, they got the equation of the problem [𝑀]𝑎̈ + [𝐾]𝑎 = 0 

Where [𝑀] is the mass matrix and [𝐾] is the geometric stiffness matrix.  

Principle results 

In order to study the instabilities of the cantilever beam due to the terminal dynamic moment, they used both 

methods. They plotted 𝜔̅ as a function of 𝐶𝑠̅̅̅ or 𝐶𝑐̅̅ ̅ for discrete values of α, with µ=7.03 and η=0.0381, and they 

considered the proportionality constants to be negative or positive. 

They found that when the dynamic moment is proportional to positive slope, the first natural frequency 

reduces to zero and the system loses stability through divergence2. Also, when 𝐶𝑠̅̅̅ is increased beyond the first 

critical value, some consecutive frequencies become complex and the system loses stability through flutter3. 

 
Figure 2 (a) Variation in the first frequency. (b) Variation of the first five frequencies for a=0.25 

Next, when the dynamic moment is proportional to negative slope, the system loses stability through flutter 

as two consecutive frequencies become complex for a value of 𝐶𝑠̅̅̅. Also, by plotting different values of α, they 

found that the critical value of 𝐶𝑠̅̅̅ decreases as α increases 

from 0.1 to 0.3 but increases when α increases from 0.3 to 

0.63. Equally, the critical value of 𝐶𝑠̅̅̅ decreases as α increases 

from 0.64 to 0.8 but increases when α increases further. This 

effect is called a “destabilizing-stabilizing” effect of the 

location of the point from where the slope of the beam is 

measured. To illustrate it, they plotted a critical stability 

curve. We can see that for some values of 𝐶𝑠̅̅̅ there is a 

“destabilizing-stabilizing- destabilizing-stabilizing” effect as 

the value of 𝐶𝑠̅̅̅ intersects the curve several times. 

 
1 Same values as for the experimental setup 
2 Each value of α has a critical value of 𝐶𝑠̅ but the trend is the same. 
3 Couple-mode flutter via a Hamilton-Hopf bifurcation 

Figure 3 Critical stability curve 



Similar results where obtained with a dynamic moment proportional to positive or negative curvature. For 

positive values of 𝐶𝑐̅̅ ̅ the system loses stability through divergence but this time the critical value of 𝐶𝑐̅̅ ̅ is almost 

the same for different values of α. For negative values of 𝐶𝑐̅̅ ̅ the system loses stability through flutter and 

higher values of α are associated with higher modes of flutter instability. 

     
                              Figure 4 Variation in the first natural frequency                                    Figure 5 Critical stability curve 

To verify the theoretical results, they did an experimental investigation with a steel cantilever beam which had 

a dynamic moment at the free end of the beam applied by a motor. Firstly, they verified that the natural 

frequencies matched well with those found theoretically. After that, they applied the vibrations to the system 

but as the system nonlinearities lead to limit cycle oscillations at the point of instability, or slightly beyond it, 

the results could be slightly different to the linear model. Nevertheless, they found that the results were similar 

to those found theoretically even though the theoretical results were for a linear model.  

Table 1 Results comparison 

 

Conclusion 

For both cases, terminal moment proportional to the slope and terminal moment proportional to the 

curvature, the beam loses stability through divergence when the constant of proportionality is positive and 

through flutter when it is negative. For the case where the terminal moment is proportional to the negative 

slope or negative curvature, multiple stability transitions can occur and higher modes of flutter instability are 

induced as the point of measurement shifts from the fixed end to the free end of the beam. The experimental 

work confirmed the theoretically obtained results.  

Today it is important to study this kind of phenomena because they can be a cause of disaster. It appears in 

many engineering areas like structural engineering when studying the wind effect on the bridges and 

skyscrapers, in marine applications and power-plant engineering or in aviation and rocket science. A great 

example of catastrophe due to this kind of phenomena is the destruction of the original Tacoma Narrows 

Bridge as a result of aeroelastic fluttering. Therefore, further studies are needed to prevent the problems by 

adjusting the mass, stiffness or even the placement of mass balances. 


