E.N.T.P.E

Département Mathématiques, Informatique et Physique

Cours de Mécanique des Milieux Continus (1^{ère} année)

Devoir numéro 1

Durée 2 heures

Vendredi 12 Octobre 2007

Documents autorisés : Polycopié de cours et notes manuscrites personnelles. Les archives (i.e. les documents antérieurs au début du cours) ne sont pas autorisées.

Problème: Transformation plane isochore

Dans tout le problème on limitera l'étude de la transformation au plan $X_3 = 0$.

On donne, dans l'espace physique \mathbb{R}^3 rapporté au repère orthonormé direct $R = (O, \vec{e_1}, \vec{e_2}, \vec{e_3})$, la transformation linéaire suivante

$$\begin{cases} x_1 = (1 + \alpha t) \cos \beta t \, X_1 - \frac{1}{1 + \alpha t} \sin \beta t \, X_2 \\ x_2 = (1 + \alpha t) \sin \beta t \, X_1 + \frac{1}{1 + \alpha t} \cos \beta t \, X_2 \\ x_3 = X_3 \end{cases}$$
 (1)

où $\alpha > 0$ et $\beta > 0$ sont deux constantes données de dimensions \mathbf{T}^{-1} et où $t \geq 0$ désigne la variable temps.

L'instant t = 0 étant choisi comme instant de référence, (X_1, X_2, X_3) représentent les coordonnées à cet instant d'une particule donnée P et (x_1, x_2, x_3) les coordonnées de cette même particule à l'instant t.

- 1. Soient \mathcal{D}_1 et \mathcal{D}_2 les courbes matérielles constituées, à l'instant de référence t=0, par les particules des demi-droites ayant pour équations respectives $(X_2=X_3=0,X_1\geq 0)$ et $(X_1=X_3=0,X_2\geq 0)$. Quelles sont leurs transformées à l'instant t? Quelle conclusion peut-on d'ores et déjà tirer de ce résultat?
- 2. Donner, dans le système de coordonnées polaires (r, θ) , l'équation des trajectoires des particules des demi-droites matérielles \mathcal{D}_1 et \mathcal{D}_2 introduites à la question 1. Quelle est la nature de ces trajectoires?
- 3. On considère à présent les courbes matérielles constituées, à l'instant t, par les particules des cercles du plan $x_3 = 0$ centrés sur l'origine de ce plan. Quel était le lieu de ces courbes matérielles à l'instant de référence t = 0?

- 4. Donner l'expression de la transformation linéaire tangente **F** puis montrer que la transformation définie par les relations (1) est isochore (i.e. que cette transformation s'effectue à volume constant).
- 5. Déterminer les tenseurs de Cauchy à droite **C** et de Green-Lagrange **L**. En déduire alors les directions principales de déformation puis vérifier la cohérence de ce résultat avec les réponses à la question 1.
- 6. En tirant parti de l'expression de \mathbf{C} obtenue à la question 5, donner la décomposition polaire $\mathbf{F} = \mathbf{R}.\mathbf{U}$ de \mathbf{F} . Montrer que là encore ce résultat pouvait être obtenu d'emblée à partir des réponses à la question 1.
- 7. Soit $\theta \in [-\frac{\Pi}{2}, \frac{\Pi}{2}]$, $N = \cos \theta$ $\vec{e_1} + \sin \theta$ $\vec{e_2}$ et soit ε_{NN} la dilatation linéique dans la direction N. Donner l'expression de ε_{NN} puis représenter sommairement, en distingant les cas $\theta \in [\frac{-\Pi}{4}, \frac{\Pi}{4}], \theta \in]\frac{-\Pi}{2}, -\frac{\Pi}{4}[\cup] \frac{\Pi}{4}, \frac{\Pi}{2}[$ et $\theta = \pm \frac{\Pi}{2}$, les variations de cette dilatation au cours du temps.

Indication : On évaluera avantage usement $\lim_{t\to +\infty} \varepsilon_{NN}$ ainsi que $\lim_{t\to 0^+} \frac{\mathrm{d}\,\varepsilon_{NN}}{\mathrm{d}t}$.

- 8. Soit à présent $\overrightarrow{N} = \frac{1}{\sqrt{2}} \overrightarrow{e_1} + \frac{1}{\sqrt{2}} \overrightarrow{e_2}$, $\overrightarrow{T} = -\frac{1}{\sqrt{2}} \overrightarrow{e_1} + \frac{1}{\sqrt{2}} \overrightarrow{e_2}$ et soit ε_{NT} la demi-distorsion entre les directions \overrightarrow{N} et \overrightarrow{T} . Etudier les variations de cette demi-distorsion au cours du temps.
- 9. En tirant parti de la linéarité de la transformation définie par (1) et de la décomposition polaire de \mathbf{F} obtenue à la question 6, montrer que le champ des vitesses a pour expression eulérienne $\mathbf{v} = v_1 \stackrel{\rightarrow}{e_1} + v_2 \stackrel{\rightarrow}{e_2}$ avec

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \beta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \frac{\alpha}{1+\alpha t} \begin{bmatrix} \cos 2\beta t & \sin 2\beta t \\ \sin 2\beta t & -\cos 2\beta t \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(2)

En déduire alors l'expression des tenseurs des taux de déformation \mathbf{D} , des taux de rotation \mathbf{W} ainsi que celle du tourbillon des vitesses $\tilde{w} = \frac{1}{2}\mathbf{rot}_x\mathbf{v}$.

10. Vérifier rapidement, d'un point de vue eulérien cette fois, la nature isochore du mouvement puis donner l'expression de la fonction courant ψ .

Indication : On rappelle que la fonction de courant ψ vérifie $\frac{\partial \psi}{\partial x_1} = -v_2$ et $\frac{\partial \psi}{\partial x_2} = v_1$.

- 11. On considère ici le cas particulier où $\alpha=0$ et $\beta>0$. Déterminer les lignes de courant à l'instant t. Que peut on dire des trajectoires? Comment qualifier le mouvement du corps matériel?
- 12. On s'intéresse à présent au cas particulier où $\beta=0$ et $\alpha>0$. Déterminer les lignes de courant à l'instant t. Vérifier rapidement le caractère irrotationnel du mouvement puis donner l'expression du potentiel des vitesses φ . Quel lien particulier existe-t-il ici entre le réseau des lignes de courant et celui des équipotentielles?

Indication: On rappelle que le potentiel des vitesses φ satisfait $\frac{\partial \varphi}{\partial x_1} = v_1$ et $\frac{\partial \varphi}{\partial x_2} = v_2$.

13. On suppose enfin $\alpha = \beta > 0$. Déterminer les lignes de courant à l'instant t = 0.