E.N.T.P.E Département Mathématiques, Informatique et Physique

Cours de Mécanique des Milieux Continus (1^{ère} année) Épreuve de rattrapage Durée 2 heures

Mardi 31 Août 2010

Documents autorisés : Polycopié de cours et notes manuscrites personnelles. Les archives (i.e. les documents antérieurs au début du cours) ne sont pas autorisées.

Exercice 1 : Essai de compression œdométrique

Un matériau homogène et compressible, au comportement élastique linéaire et isotrope, de faible module d'Young E et de coefficient de Poison ν , est placé à l'intérieur d'un moule cylindique indéformable, comme l'illustre la figure 1. Le frottement au contact des parois du moule est négligeable. Au moyen d'un piston, on exerce à la surface du matériau une pression p. Enfin, l'on néglige les actions mécaniques à distance.

Calculer, en fonction de p, E et ν , la dilatation subie par le matériau dans la direction verticale Oz puis, en fonction de p et ν , la pression qu'exerce celui-ci sur les parois du moule.

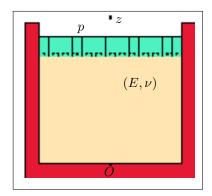


Fig. 1 – Essai de compression œdométrique

Exercice 2 : Transformation élastique infinitésimale

Un cylindre creux d'axe de révolution Ox_3 , constitué d'un milieu élastique linéaire isotrope, de module de Lamé μ , est soumis à une transformation infinitésimale caractérisée, relativement au système de coordonnées cartésiennes (x_1, x_2, x_3) , par le champ des déplacements

$$\begin{cases} u_1 &= -\frac{\alpha x_2}{r^2} \\ u_2 &= \frac{\alpha x_1^2}{r^2} \\ u_3 &= 0 \end{cases}$$

où $r=\sqrt{x_1^2+x_2^2}$ et où $\alpha\ll 1$ est une constante strictement positive donnée de dimension L².

- 1. Donner l'expression des composantes non nulles du tenseur linéarisé des petites déformations ε puis celles du tenseur des contraintes de Cauchy σ .
- 2. Donner l'expression de σ dans le repère local $(O, \vec{e_r}, \vec{e_\theta}, \vec{e_z})$ associé au système de coordonnées cylindriques (r, θ, z) , puis vérifier que l'équilibre du solide est possible sans actions mécaniques à distance.

Exercice 3 : Critère de limite élastique de Stassi d'Alia

Le critère de limite élastique de Stassi d'Alia a pour expression

$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 + C_1(\sigma_1 + \sigma_2 + \sigma_3) + C_2 = 0$$

où σ_1 , σ_2 et σ_3 désignent les contraintes principales et où C_1 et C_2 sont deux constantes mécaniques caractéristiques du matériau. On désigne enfin respectivement par σ_1^c et σ_1^t les limites élastiques en compression et en traction simple.

- 1. Donner, en fonction de σ_1^c et σ_1^t , l'expression des constantes mécaniques C_1 et C_2 .
- 2. Montrer que pour des états de déformation plane $(\varepsilon_3 = 0)$ et lorsque $\nu = \frac{1}{2}$ le critère de limite élastique de Stassi d'Alia a pour expression $3(\sigma_1 \sigma_2)^2 + 3C_1(\sigma_1 + \sigma_2) + 2C_2 = 0$ puis donner l'expression de la courbe limite dans le plan du tricercle de Mohr d'abscisse σ_{nn} (contrainte normale) et d'ordonnée τ_n (contrainte de cisaillement), en fonction de σ_{nn} , τ_n , C_1 et C_2 . Quelle est la nature de cette courbe?

Exercice 4 : Écoulement dans une conduite cylindrique

Une conduite cylindrique de révolution est, à gauche d'une section (S_1) , divisée par un plan passant par son axe Oz, ainsi que l'illustre la figure 2. L'une des moitiés est alimentée par de l'eau animée d'une vitesse v_1 , l'autre par de l'eau animée de la vitesse $\frac{1}{2}v_1$. À droite de (S_1) , après une zone perturbée, l'écoulement est redevenu uniforme dans une section (S_2) . L'eau est supposée incompressible et l'on néglige le frottement entre celle-ci et la conduite ainsi que les actions mécaniques à distance. On admet enfin que dans chacune des sections (S_1) et (S_2) la pression est constante.

Calculer, en fonction de v_1 , la vitesse v_2 dans la section (S_2) puis, en fonction de v_1 et de la masse volumique ρ de l'eau, la différence de pression $p_2 - p_1$.

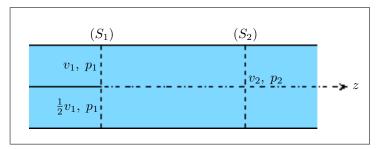


Fig. 2 – Écoulement dans une conduite cylindrique

Exercice 5 : Écoulements d'un fluide visqueux newtonien

On considère des écoulement d'un fluide visquex newtonien, de masse volumique ρ et de viscosité dynamique de cisaillement η , caractérisés, relativement au système de coordonnées cartésiennes (x_1, x_2, x_3) , par le champ eulérien des vitesses

$$\begin{cases} v_1 &=& -\frac{x_2}{r}h(r) \\ v_2 &=& \frac{x_1}{r}h(r) \\ v_3 &=& k(r) \end{cases}$$

où $r=\sqrt{x_1^2+x_2^2}$ et où $r\mapsto h(r)$ et $r\mapsto k(r)$ sont des fonctions de classe \mathcal{C}^2 de la variable r.

- 1. Montrer que l'écoulement s'effectue à volume constant.
- 2. L'axe Ox_3 étant vertical ascendant et les actions mécaniques à distance étant réduites aux forces gravifiques, montrer qu'il existe des tels écoulements en donnant, relativement au système de coordonnées cylindriques (r, θ, z) , l'expression de la pression p au sein du fluide, cette dernière étant supposée indépendante de θ (justifier). On exprimera p en fonction de ρ , r, z et de quatre constantes arbitraires.