COLIN Benoit
PLASSARD Florent
SOBCZYK-BEILLEVERT Magdalena
Projet pont
Définition de la répartition de matière d'une poutre mixte
bennition de la repartition de matiere à une poutre mixte
4 Février 2011

BILLON Elodie

Sommaire

In	troduc	ion	4
1.	Mod	délisation ST1 de la structure	5
	1.1	Hypothèses	5
	1.2	Caractéristiques des poutres	6
	1.3	Charges	7
	1.4	Calcul des coefficients de Courbon	8
	1.5	Combinaison d'action	8
2.	Rés	ultats	9
	2.1	Résultats de la première itération	9
	2.2	Résultats de la deuxième itération	
3.		ification d'une section en travée	
٦.	3.1	Justification vis-à-vis de la flexion à l'ELS	
		1 Démarche	
		2 Calcul des contraintes	
		3 Calcul des valeurs admissibles	
		4 Résultats des vérifications et optimisation	
	3.2 Ca	cul du moment résistant à l'ELU	16
4.	Just	ification d'une section sur appui	18
	4.1	Justification vis-à-vis de la flexion à l'ELU	18
	4.2 Jus	tification vis-à-vis de la flexion à l'ELS	20
	4.2.	1 Démarche	20
	4.2.	2 Calcul des contraintes	20
	4.2.	3 Calcul des valeurs admissibles	21
	4.2.	4 Résultats des vérifications et optimisation	21
	4.2	Justification vis-à-vis du cisaillement	
Αı	nnexes		25

Introduction

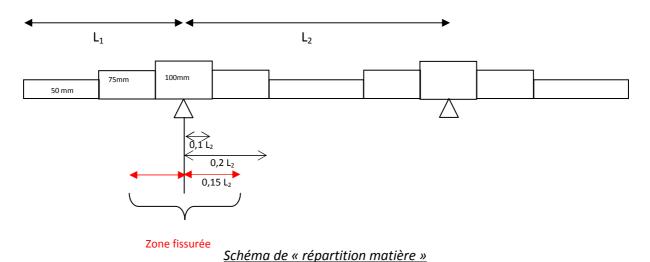
Un nouveau tracé routier au niveau de la commune de Briey nécessite la construction d'un viaduc pour franchir le ruisseau Le Woigot, la RN 43 ainsi que la rue Gambetta. D'après le tracé en long, la brèche à franchir est de 317m. Des remblais peuvent être envisagés pour réduire cette distance. On notera que le site présente la particularité d'être implanté sur d'anciennes carrières ce qui peut engendrer à terme des affaissements miniers, les solutions techniques devront en tenir compte. Le viaduc porte une route de type 2x1 voie.

Lors de la phase d'avant projet plusieurs solutions ont été envisagées et étudiées, notamment une solution de caisson en béton précontraint, un pont haubané, et un bi poutre mixte. C'est cette dernière solution qui a été retenue, principalement sur un critère économique.

Le ferraillage du hourdis a été calculé lors du précédent rendu, avec une justification aux Eurocodes. Il s'agit donc dans ce rapport de déterminer les efforts dans les poutres mixtes, afin de justifier ces sections et d'en déduire la « répartition matière ». En effet, pour économiser et optimiser les sections d'acier, nous mettrons en place des épaisseurs de semelles différentes, selon si l'on se trouve en travée ou plus proche des appuis.

Pour calculer les efforts dans les poutres, nous modéliserons l'ouvrage sous ST1, puis nous calculerons les contraintes et nous réaliserons les vérifications nécessaires.

1. Modélisation ST1 de la structure


1.1 Hypothèses

Il s'agit de modéliser ici le tablier de l'ouvrage, un bi-poutre, à l'aide du logiciel de structure ST1. L'objectif est de déterminer les sollicitations dans les poutres mixtes, pour pouvoir justifier la « répartition matière » des poutres, à savoir la variation d'épaisseur des semelles supérieures et inférieures, longitudinalement.

Pour cela, nous considérons le tablier comme une poutre, permettant ainsi d'avoir à résoudre un problème plan.

Afin de prendre en compte la répartition transversale des charges, nous calculons, pour chaque charges et surcharges, le coefficient de Courbon associé. Les calculs de ce coefficient sont présentés dans le paragraphe suivant.

Pour modéliser au mieux le profil longitudinal des semelles, nous avons divisé la poutre en plusieurs barres, de trois types différents, chaque type correspondant à une épaisseur de semelle différente. Le schéma suivant, présente les épaisseurs choisies dans un premier temps, qui seront ensuite optimisées.

Dans le fichier texte de modélisation pour ST1, à chaque fois que les caractéristiques changent, nous créons une nouvelle barre. Nous obtenons donc la géométrie suivante, constitué de 16 barres. Les appuis simples sont représentés par des croix.

2 1 23 4 5 6 7 8 ... 9 10 11 12 13 1415 16

Pour les matériaux, nous utilisons du béton de poids propre 2,5 t/m³, et de l'acier avec les caractéristiques suivantes :

E = 210 000 MPa v = 0.33 et $\rho = 7.7 \text{ t/m}^3$

1.2 Caractéristiques des poutres

Les caractéristiques des poutres ont été calculées à l'aide d'une feuille de calcul Excel, fournie en annexe.

Ces caractéristiques varient selon les barres, d'abord à cause de la répartition matière. En effet la variation d'épaisseur des semelles sur appuis et à mi travée, implique des variations au niveau de l'aire, de la position du centre de gravité de la section mixte, et de l'inertie... Nous avons donc crée quatre types de barres :

- Le premier type concerne les barres n°1, 8, 9 et 16, c'est-à-dire les barres situées en travée, loin des appuis. Pour ces barres l'épaisseur de semelle choisie est de 50 mm, dans la première itération. L'épaisseur de l'âme est pris égale à 0,02 m.
- Les barres de types 2 sont les barres n°2, 7, 10, et 15. Ces sont les barres qui ont une épaisseur de semelle de 75 mm, et qui ne sont pas dans la partie où le béton est considéré fissuré (entre 0,2 L et 0,15 L; cf. schéma ci-dessus). L'épaisseur de l'âme choisie est de 0,035 m.
- Les barres de type 2 bis sont les barres n°3, 6, 11 et 14. Elles sont aussi une épaisseur de semelle de 75 mm, mais rentre dans la zone où le béton est considéré comme fissuré (entre 0,15 L et 0,1 L). L'aire de la section, la position du centre de gravité et l'inertie sont donc modifié. En effet nous avons choisi de ne pas du tout prendre en compte le béton fissuré, même si nous aurions pu tenir compte des armatures passives du béton fissuré. L'épaisseur de l'âme choisie est de 0,035 m.
- Les barres de type 3 sont les barres n°4, 5, 12 et 13. Elles se situent juste au niveau des appuis. Elles sont une épaisseur de semelle de 100 mm. L'épaisseur de l'âme choisie est de 0,035 m.

De plus, ces caractéristiques varient en fonction du phasage. En effet, dans un premier temps, lorsque le béton n'est pas encore sec, seules les poutres métalliques reprennent les efforts dus au poids propre. Le béton n'est donc pas pris en compte dans les caractéristiques de poutres, pour le poids propre.

Pour les autres charges, le béton est pris en compte, dans la section mixte (sauf s'il est fissuré) il faut donc lui ajouter un coefficient d'équivalence acier/béton. Les superstructures par exemple représentent des efforts à long terme, nous avons donc pris un coefficient d'équivalence à long

terme de 18. Par contre pour les surcharges routières, qui sont des charges instantanées, nous prenons un coefficient d'équivalence à court terme de 6.

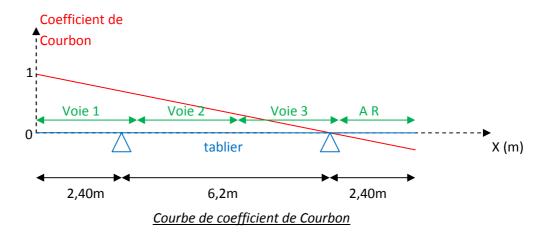
1.3 Charges

Dans la modélisation de la structure sous ST1, nous avons également défini les cas de chargement. Il s'agit des charges du au poids propre, aux superstructures, et aux charges routières.

Pour le poids propre du tablier mixte composé de deux poutres en acier et d'une dalle béton, nous avons renseigné les caractéristiques de l'acier et du béton utilisés et leur poids volumique. Cela à permis de définir en charge 1 les charges de poids propres.

En ce qui concerne les superstructures, un calcul à part tenant compte précisément des superstructures installé sur l'ouvrage (couche de chaussée, BN2 et corniche métalliques) nous a conduit au poids linéique suivant : 52,98 kN. Voici le tableau de calcul des superstructures :

superstructures	largeur m	épaisseur m	poids volumique kN/m3	poids linéaire kN/ml	Pondération max	charge kN/m
corniche				0,28	1,0	0,28
BN2				12	1,0	12
Chape	11,0	0,03	25	8,25	1,2	9,9
Enrobé	11,0	0,08	25	22	1,4	30,8


Part de moment apporté par les superstructures : 52,98 kN/ml

Pour prendre en compte ce chargement, nous l'avons paramétré comme une force verticale répartie. Pour finir de caractériser cette charge 2, nous avons pondéré cette force par un coefficient de Courbon égale à 0,5 en raison de la symétrie de l'ouvrage, pour prendre en compte l'excentrement transversal des superstructures. Nous reviendrons sur la méthodes d'obtention des coefficients de Courbon dans la partie suivante.

Pour ce qui est de la modélisation des charges de trafic, après avoir défini dans ST1 la largeur de la chaussée (11m), nous avons paramétré un convois représentant les charges TS des tandems d'essieu, ainsi qu'une charge répartie pour les efforts UDL. Ces chargements, conformément aux normes pour un tablier de 11m, concernent une décomposition du tablier en trois voies fictives de 3m de large, ainsi qu'une aire résiduelle de 2m. De ce fait nous obtenons les charges de trafic LM1 correspondant à l'Eurocode. Toutefois, il a aussi été nécessaire de pondérer ces charges par des coefficients de Courbon pour tenir compte des répartissions transversales des voies, présentant des chargement différents.

1.4 Calcul des coefficients de Courbon

Comme nous l'avons dit précédemment, le but de calculer les coefficients de Courbon est de pouvoir prendre en compte l'influence de la position transversale d'un chargement pour une ligne d'influence donné. Ici nous choisissons d'observer les efforts résultants sur l'appuis de la dalle béton sur la poutre de gauche. Nous considérerons aussi une répartition linéaire des coefficients de Courbon comme le montre le schéma suivant.

On en déduit l'expression de la droite : K(X) = (8,60 - X)/8,60

Ensuite le coefficient d'une voie correspond a celui de son centre de gravité. Pour pouvoir prendre en compte cet effet, le coefficient est directement appliqué à la valeur du chargement dans la modélisation.

1.5 Combinaison d'action

Arrivé à ce stade de la modélisation, il ne reste plus qu'a combiner les actions précédemment modélisées en fonction des caractérisation que nous allons vouloir vérifier. Ici, nous allons dimensionner à l'aide des états limites de service caractéristiques (ELS cara), quasi-permanents (ELS QP) et fréquents (ELS freq), ainsi qu'aux états limites ultimes (ELU).

Comme le définissent les normes, la différence entre ces différent cas de charge correspondent à l'application de pondération différentes des actions. A l'aide de la modélisation, il est possible de demander directement à ST1 les enveloppes des efforts demandés.

Dans les but d'exploiter les sollicitations ainsi obtenues (en moment notamment), plusieurs solutions étaient possibles :

- -Soit une lecture graphique sur l'interface du logiciel
- Soit une exploitation des fichier résultats demander en fin de modélisation.

Nous avons choisi la deuxième option, même si elle s'est révélé plus fastidieuse

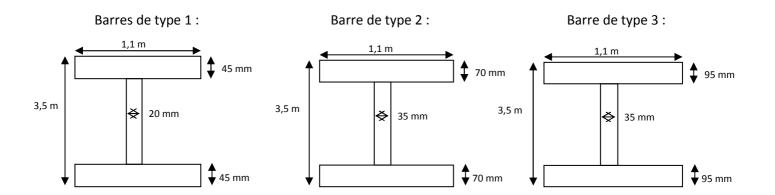
2. Résultats

2.1 Résultats de la première itération

Voici les résultats obtenus avec ST1, pour la première itération de répartition matière, à savoir 50 mm d'épaisseur de semelle en travée, 75 mm proche des appuis et 100 mm sur appuis. Les résultats sont donnés pour les sollicitations élémentaires (le poids propre, les superstructures, les charges routières), afin de pouvoir tenir compte du phasage et donc de la variation d'inertie en fonction des charges, dans le calcul des contraintes.

Sollicitations élémentaires

poids propre	Mz max	Mz min	Ty max	Ty min
barre type 1	13995	-24571	2267,8	-2267,8
barre type 2	33673	7295,2	2843,2	-2843,2
barre type 3	57918	29057	3454,2	-3454,2


Superstructures	Mz max	Mz min	Ty max	Ty min
barre type 1	3768,3	-10732	875,40	-877,06
barre type 2	11307	783,23	1079,4	-1081
barre type 3	20416	9315	1283,3	-1285

charges udl	Mz max	Mz min	Ty max	Ty min
barre type 1	10336	-18277	948,74	-951,73
barre type 2	13779	-7516,8	1168,0	-1166,6
barre type 3	22116	-3287,2	1418,5	-1417,3

charges TS	Mz max	Mz min	Ty max	Ty min
barre type 1	5302,9	-13544	818,06	-817,24
barre type 2	5965,8	-7841,9	775,13	-775,57
barre type 3	6628,6	-3890,3	826,34	-826,1

Moment min ELU en travée :	-87680	kN.m
Effort Tranchant max ELU appui:	9321,7	kN

2.2 Résultats de la deuxième itération

Sollicitations élémentaires

poids propre	Mz max	Mz min	Ty max	Ty min
barre type 1	13972	-24230	2243,8	-2243,7
barre type 2	33441	7389,9	2813,2	-2813,2
barre type 3	57409	28903	3412,3	-3412,3

Superstructures	Mz max	Mz min	Ty max	Ty min
barre type 1	3852,4	-10694	876,64	-878,43
barre type 2	11402	880,32	1080,6	-1082,4
barre type 3	20522	9411,1	1284,6	-1286,4

charges udl	Mz max	Mz min	Ty max	Ty min
barre type 1	10416	-18177	947,97	-951,11
barre type 2	13957	-7474,3	1169,8	-1168,2
barre type 3	22333	-3317,2	1420,3	-1418,9

charges TS	Mz max	Mz min	Ty max	Ty min
barre type 1	5348,6	-13489	818,02	-817,2
barre type 2	6017,2	-7810,6	775,39	-775,88
barre type 3	6685,8	-3880,8	826,32	-826,08

Moment min ELU en travée :	-87090	kN.m	
Effort Tranchant max ELU appui:	9264,3	kN	

3. Justification d'une section en travée

3.1 Justification vis-à-vis de la flexion à l'ELS

3.1.1 Démarche

Nous effectuerons dans un premier temps les justifications vis-à-vis des contraintes normales en Etat Limite de Service pour les sections comprimées.

La démarche de justification est la suivante :

Dans un premier temps les efforts sont calculés grâce au logiciel ST1 au cours des trois phases de construction :

Phase 1 : mise en œuvre des poutres métalliques , coffrage et coulage du béton. Les poutres métalliques supportent seules les charges

Phase2 : décoffrage et mise en place des superstructures

Phase 3: passage des charges mobiles

Nous calculons ensuite les contraintes dans le béton en considérant les efforts sollicitant lors de chaque phase.

Enfin nous vérifions que les contraintes totales sont inférieures à la contrainte admissible en fibre supérieur et inférieure pour le béton et l'acier.

3.1.2 Calcul des contraintes

Pour la phase 1 :

Nous calculons successivement les inerties de chaque partie de la poutre dans le repère lié à leur centre de gravité, la position du centre de gravité (CDG)de la poutre puis l'inertie de chaque partie. Nous disposons également des distance entre le CDG et les fibres supérieures et inférieures de la poutre, respectivement v et v'

D'où $\sigma_{1,sup} = M_{min}(poids_propre_acier)v/I$ et $\sigma_{1,inf} = M_{min}(poids_propre_acier)v'/I$

Avec M_{min} (poids_propre_acier) la valeur maximale de l'enveloppe des efforts sollicitant provoquant une compression en fibre supérieure des poutres.

Pour la phase 2 :

Nous calculons l'inertie composite en considérant l'acier et le béton en appliquant un coefficient à long terme n = 15 aux sections de béton.

Nous disposons des distances entre le CDG et la fibre supérieure du béton, la fibre inférieure du béton (respectivement $v_{béton}$), la fibre supérieure de l'acier, la fibre inférieure de l'acier(respectivement v_{acier}).

Nous sommes donc en mesure de calculer les valeurs des contraintes en fibre supérieure du béton, en fibre inférieure du béton, en fibre supérieure de l'acier, en fibre inférieure de l'acier

$$\sigma_{2,\text{sup, béton}} = M_{\text{min}}(\text{superstructures})v_{\text{béton}}/I$$
 et $\sigma_{2,\text{inf, béton}} = M_{\text{min}}(\text{superstructures})v'_{\text{béton}}/I$ $\sigma_{2,\text{sup, acier}} = M_{\text{min}}(\text{superstructures})v'_{\text{acier}}/I$ et $\sigma_{2,\text{inf, acier}} = M_{\text{min}}(\text{superstructures})v'_{\text{acier}}/I$

Avec M_{min} (superstructures) la valeur maximale de l'enveloppe des efforts sollicitant dus aux superstructures provoquant une compression en fibre supérieure des poutres.

Pour la phase 3

Nous calculons l'inertie composite en considérant l'acier et le béton en appliquant un coefficient à court terme n = 6 aux sections de béton

Nous disposons des distances entre le CDG et la fibre supérieure du béton, la fibre inférieure du béton (respectivement $v_{béton}$), la fibre supérieure de l'acier, la fibre inférieure de l'acier(respectivement v_{acier}).

Nous sommes donc en mesure de calculer les valeurs des contraintes en fibre supérieure du béton, en fibre inférieure du béton, en fibre supérieure de l'acier, en fibre inférieure de l'acier.

$$\sigma_{3,\text{sup, béton}} = M_{\text{min}}(\text{charges_variables}) v_{\text{béton}} / I$$
 et $\sigma_{3,\text{inf, béton}} = M_{\text{min}}(\text{charges_variables}) v'_{\text{béton}} / I$ $\sigma_{3,\text{sup, acier}} = M_{\text{min}}(\text{charges_variables}) v'_{\text{acier}} / I$ et $\sigma_{3,\text{inf, acier}} = M_{\text{min}}(\text{charges_variables}) v'_{\text{acier}} / I$

Avec M_{min} (charges_variables) la valeur maximale de l'enveloppe des efforts sollicitant dus aux charges variables provoquant une compression en fibre supérieure des poutres.

3.1.3 Calcul des valeurs admissibles

Nous calculons maintenant les contraintes admissibles en la fibres supérieure et inférieure du béton ainsi gu'en fibres supérieure et inférieure de l'acier selon les valeurs fournies par l'Eurocode 2.

Finalement on vérifie que la somme des contraintes pour les trois phases en chaque valeur de la section est inférieure à la valeur admissible.

Ainsi pour le béton :

- $\sigma_{2,\text{sup, béton}} + \sigma_{3,\text{sup, béton}} \le \sigma_{\text{admissible}} = 21 \text{ MPa}$
- $\sigma_{2,inf, b\acute{e}ton} + \sigma_{3,inf, b\acute{e}ton} \le \sigma_{admissible} = 21 \text{ MPa}$

Pour l'acier (40mm<t≤65mm):

- $\sigma_{1,sup} + \sigma_{2,sup, acier} + \sigma_{3,sup, acier} \le \sigma_{admissible acier} = 335 \text{ Mpa}$
- $\sigma_{1,inf} + \sigma_{2,inf, acier} + \sigma_{3,inf, acier} \le \sigma_{admissible_acier} = 335 \text{ Mpa}$

3.1.4 Résultats des vérifications et optimisation

Nous effectuons les vérifications dans un premier temps avec une section proposée, puis optimisons la section en proposant une géométrie plus économique.

• Section sur travée de base

Les données géométrique de la section en travée sont les suivantes :

dénomination	Valeur(mm)	
b _{fs}	1100	
b _{fi}	1300	
h	3500	
h _{wt}	3400	
t _{fs}	50	
t _{fi}	50	
t _w	20	

Les efforts sollicitant calculés par ST1 sont (convention ST1):

Phase	Moment sollicitant (MN.m)
1	-24.5
2	-31.7
3	-10.7

Les contraintes calculées en différents points de la section sont :

Zone de la section	Contrainte Phase	Contrainte	Contrainte	Contrainte
	1(Mpa)	Phase 2(Mpa)	Phase 3(Mpa)	Totale(Mpa)
Fibre supérieure acier	-107.2	-12.0	-28.6	-147.8
Fibre inférieur acier	96.5	66.1	157.6	320.3
Fibre supérieure béton		-1.1	-7.9	-9.0
Fibre inférieure béton		-0.7	-4.8	-5.4

Nous constatons effectivement :

- $\sigma_{2,\text{sup, béton}} + \sigma_{3,\text{sup, béton}} = -1.1 + -7.9 \le \sigma_{\text{admissible}} = 21 \text{ MPa}$
- $\sigma_{2,inf, b\acute{e}ton} + \sigma_{3,inf, b\acute{e}ton} = -0.7 + -4.8 \le \sigma_{admissible} = 21 \text{ MPa}$
- $\sigma_{1,sup} + \sigma_{2,sup, acier} + \sigma_{3,sup, acier} = -107.2 + -12.0 + -28.6 \le \sigma_{admissible acier} = 335 \text{ Mpa}$
- $\sigma_{1,inf} + \sigma_{2,inf, acier} + \sigma_{3,inf, acier} = 96.5 + 66.1 + 157.6 \le \sigma_{admissible_acier} = 335 \text{ Mpa}$

La section proposée est donc vérifiée.

Nous effectuons une deuxième itération pour optimiser les dimensions et quantité de matière.

• Section sur travée optimisée

Les données géométrique de la section en travée sont les suivantes :

dénomination	Valeur(mm)
b _{fs}	1100
b _{fi}	1300
h	3500
h _{wt}	3410
t _{fs}	45
t _{fi}	45
t _w	20

Les efforts sollicitant calculés par ST1 sont :

Phase	Moment sollicitant (MN.m)	
1	-24.23	
2	-31.67	
3	-10.69	

Les contraintes calculées en différents points de la section sont :

Zone de la section	Contrainte Phase	Contrainte	Contrainte	Contrainte
	1(Mpa)	Phase 2(Mpa)	Phase 3(Mpa)	Totale(Mpa)
Fibre supérieure acier	-115.1	-12.3	-29.3	-156.7
Fibre inférieur acier	104.0	72.7	173.3	350.0
Fibre supérieure béton		-1.2	-8.3	-9.4
Fibre inférieure béton		-0.7	-4.9	-5.6

Nous constatons:

- $\sigma_{2,\text{sup, béton}} + \sigma_{3,\text{sup, béton}} = -1.2 -8.3 \le \sigma_{\text{admissible}} = 21 \text{ MPa}$
- $\sigma_{2,inf,\ b\acute{e}ton}$ + $\sigma_{3,inf,\ b\acute{e}ton}$ = -0.7-4.9 ≤ $\sigma_{admissible}$ =21 MPa
- $\sigma_{1,sup}$ + $\sigma_{2,sup, acier}$ + $\sigma_{3,sup, acier}$ = -115.1 -12.3 -29.3 $\leq \sigma_{admissible acier}$ = 335 Mpa
- $\sigma_{1,inf} + \sigma_{2,inf, acier} + \sigma_{3,inf, acier} = 104.0 + 72.7 + 173.3 \ge \sigma_{admissible acier} = 335 \text{ Mpa}$

Cette section ne respecte pas les limites en traction en fibre inférieure des poutres en aciers. Nous choisissons donc de conserver la section proposée initialement.

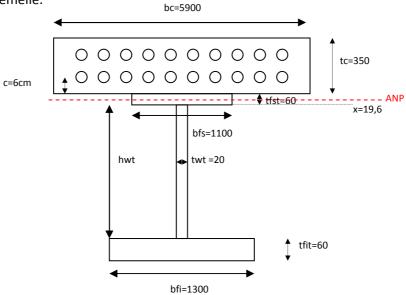
3.2 Calcul du moment résistant à l'ELU

Le moment sollicitant à l'ELU en travée a été déterminé grâce à la modélisation sur ST1,

Med (MN.m) sollicitant=87,09

Les données géométriques de la section sont :

bfs(m)	1,1
bfi	1,3
h	3,5
hw	3,41
tfst	0,045
tfit	0,045
twt	0,02
fy(tfst) (Mpa)	335
fy(tfit) (Mpa)	335
fy(twt) (Mpa)	345


Elles ont été optimisées suite aux calculs à l'ELS l'épaisseur des semelles a été revue à la baisse en travée. On choisit 45mm au lieu de 50.

On étudie dans un premier temps la classe de la section en travée, qui influencera par la suite le calcul du moment résistant. On calcule ainsi les efforts générés dans chacun des éléments de la section.

	Effort Maximum(MN)	
Béton F4	40,96	
Semmelle sup F1	16,58	
Semelle inf F2	19,60	
Ame F3	23,529	
Efforts de traction Ft	50,33	
F2 + F3	43,13	
ΣF poutre métallique	59,71	

On note que F2+F3<Ft< Σ F poutre métallique. L'axe neutre plastique se situe donc dans la semelle supérieure.

Toute l'âme est tendue ainsi que la semelle inférieure. La section est de classe 1. On détermine par la suite la position de l'axe neutre dans la semelle supérieure. On trouve x=19,6 mm à partir du bas de la semelle.

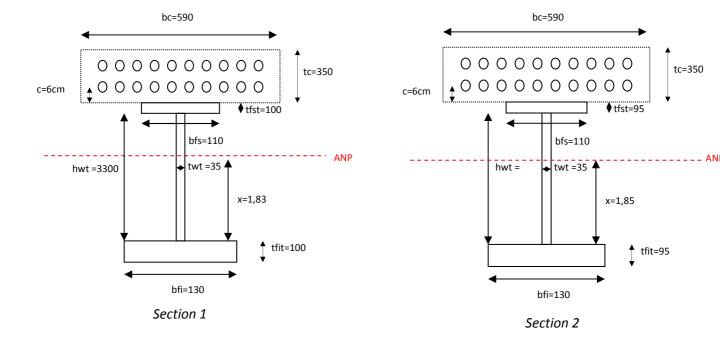
D'après les calculs des efforts dans les éléments, ci-dessus, on peut calculer, le moment plastique ou moment résistant pour la section en travée.

On trouve Mpl,Rd (MN.m)= 116,63MN.m

Med (MN.m) sollicitant= 87,09 < Mpl,Rd (MN.m)= 116,63 MN.m

La section travée est bien vérifiée à l'ELU.

4. Justification d'une section sur appui


4.1 Justification vis-à-vis de la flexion à l'ELU

Les calculs à l'ELU font intervenir les contraintes déterminées au préalable. Une fois de plus, il s'agit de déterminer la classe de la section pour mener à bien l'optimisation de la géométrie de la section sur appui. Le calcul à l'ELU étant dimensionnant, c'est à partir de celui-ci que l'on cherchera à expliciter une géométrie optimale de la section sur appui.

On s'intéressera à deux géométries de la section. La première est la section initiale avec une épaisseur d'âme de 35 mm et des épaisseurs de semelles de 100 mm. La seconde est la section optimisée calculée après la section 1.

On trouve que la semelle inférieure est de classe 1. Il faut alors déterminer la classe de l'âme. On procède en calculant, comme précédemment, les efforts générés dans chaque élément de la section. On trouve à chaque fois ΣF >Fsemelle inf+F3 âme>Ft . Donc l'axe neutre plastique est dans l'âme. On détermine sa position à partir du haut de la semelle inférieure.

	Section 1	Section 2
x(m) à partir du haut de la semelle inf.	1,83	1,85

Au vu des limites de classes, la section est au minimum de classe 3, on a par ailleurs cherché à optimiser la section afin qu'elle reste bien dans cette classe, ce qui permet de simplifier les calculs de résistance.

Limites supérieures de classes et critère de classement :

	Critère hw/tw	Borne sup. classe 2	Borne sup classe 3
Section 1	94,29	60,55	98,23
Section 2	94,57	60,08	97,65

La section 1 de base et la section 2, optimisée sont donc bien de classe 3.

La résistance à l'ELU en classe 3 avec une dalle tendue permet d'être vérifiée par comparaison des contraintes en fibre supérieure, inférieure ainsi que dans les aciers passifs :

Contraintes		Limites à ne pas dépasser		Vérification
	Sect	tion 1		
σsup(Mpa)	-284,60	fy(tfs) (Mpa)	315	ОК
oinf(Mpa)	296,20	fy(tfi) (Mpa)	315	ОК
σs(Mpa)	-287,70	fs (Mpa)	500	ОК
	Section 2			
σsup(Mpa)	-289,9	fy(tfs) (Mpa)	315	ОК
σinf(Mpa)	303,67	fy(tfi) (Mpa)	315	ОК
σs(Mpa)	-287,7	fs (Mpa)	500	ОК

Nota : Le calcul des contraintes est explicité dans la partie suivante. Il suffit de multiplier les résultats à l'ELS par 1,35 pour trouver les contraintes à l'ELU

4.2 Justification vis-à-vis de la flexion à l'ELS

4.2.1 Démarche

Nous effectuerons dans un second temps les justifications vis-à-vis des contraintes normales en Etat Limite de Service pour les sections tendues.

La démarche de justification est la suivante :

Dans un premier temps les efforts sont calculés grâce au logiciel ST1 au cours des trois phases de construction.

Dans le cas d'une section sur appui, le béton est fissuré et ne travaille donc pas. Les aciers de charpente sont donc pris en compte. Nous calculons les contraintes dans l'acier de charpente en fibre supérieure et inférieure ainsi que les contraintes dans les aciers de la dalle.

Enfin nous vérifions que les contraintes totales sont inférieures à la contrainte admissible en fibre supérieur et inférieure pour l'acier de charpente et les aciers supérieurs et inférieurs pour les aciers de dalle.

4.2.2 Calcul des contraintes

Pour la phase 1 :

Nous calculons successivement les inerties de chaque partie de la poutre dans le repère lié à leur centre de gravité, la position du centre de gravité (CDG)de la poutre puis l'inertie de chaque partie. Nous disposons également des distance entre le CDG et les fibres supérieures et inférieures de la poutre, respectivement v et v'

D'où $\sigma_{1,sup} = M_{max}(poids_propre_acier)v/I$ et $\sigma_{1,inf} = M_{max}(poids_propre_acier)v'/I$

Avec M_{max} (poids_propre_acier) la valeur maximale de l'enveloppe des efforts sollicitant provoquant une traction en fibre supérieure des poutres.

Pour les phases 2 et 3 :

Nous calculons l'inertie fissurée de la poutre et la dalle et sommes donc en mesure de calculer les valeurs des contraintes au niveau des aciers passifs supérieurs et inférieurs, ainsi qu'en fibre supérieure et inférieur de la poutre.

4.2.3 Calcul des valeurs admissibles

Nous calculons maintenant les contraintes admissibles pour les aciers passifs et l'acier de charpente selon les valeurs fournies par l'Eurocode 2.

Finalement on vérifie que la somme des contraintes pour les trois phases en chaque valeur de la section est inférieure à la valeur admissible.

Ainsi pour les aciers passifs:

- $\sigma_{2,inf, passif} + \sigma_{3,inf, passif} \le \sigma_{admissible} = 434.78 \text{ MPa}$
- $\sigma_{2,\text{sup, passif}} + \sigma_{3,\text{sup, passif}} \le \sigma_{\text{admissible}} = 434.78 \text{ MPa}$

Pour l'acier de charpente (80mm<t≤100mm) :

- $\sigma_{1,\text{sup}} + \sigma_{2,\text{sup, charpente}} + \sigma_{3,\text{sup, charpente}} \le \sigma_{\text{admissible charpente}} = 315 \text{ Mpa}$
- $\sigma_{1,inf} + \sigma_{2,inf, charpente} + \sigma_{3,inf, charpente} \le \sigma_{admissible_charpente} = 315 \text{ Mpa}$

4.2.4 Résultats des vérifications et optimisation

• Section sur appui de base

Nous effectuons les vérifications dans un premier temps avec une section proposée, puis optimisons la section en proposant une géométrie plus économique.

Les données géométrique de la section sur appui sont les suivantes :

dénomination	Valeur
b _{fs}	1100
b _{fi}	1300
h	3500
h _{wt}	3300
t _{fs}	100
t _{fi}	100
t _w	35

Les efforts sollicitant calculés par ST1 sont (convention ST1) :

Phase	Moment sollicitant (MN.m)
1	58.9
2	20.6
3	29.1

Les contraintes calculées en différents points de la section sont :

Zone de la section	Contrainte
	Totale(Mpa)
Fibre supérieure	210.8
poutre acier	
Fibre inf poutre acier	-219.4
Aciers passifs fibre sup	213.1
Aciers passifs fibre inf	200.2

- $I\sigma_{1,sup} + \sigma_{2,sup, charpente} + \sigma_{3,sup, charpente} I = 210.8 \le \sigma_{admissible_charpente} = 315 Mpa$
- $I\sigma_{1,inf} + \sigma_{2,inf, charpente} + \sigma_{3,inf, charpente}I = -219.4 \le \sigma_{admissible_charpente} = 315 Mpa$
- $\sigma_{2,inf, passif} + \sigma_{3,inf, passif} = 213.1 \le \sigma_{admissible} = 434.78 \text{ MPa}$
- $\sigma_{2,\text{sup, passif}} + \sigma_{3,\text{sup, passif}} = 200.2 \le \sigma_{\text{admissible}} = 434.78 \text{ MPa}$

•

Nous constatons donc que la géométrie proposée pour la section sur appui satisfait les conditions imposée par l'Eurocode.

• Section en travée optimisée

Nous optimisons la section en proposant une géométrie plus économique.

Les données géométriques de la section sur appui sont les suivantes :

dénomination	Valeur (en mm)
b _{fs}	1100
b _{fi}	1300
h	3500
h _{wt}	3310
t _{fs}	95
t _{fi}	95
t _w	35

Les efforts sollicitants calculés par ST1 sont (convention ST1) :

Phase	Moment sollicitant (MN.m)
1	57.4
2	20.5
3	29.0

Les contraintes calculées en différents points de la section sont :

Zone de la section	Contrainte
	Totale(Mpa)
Fibre supérieure poutre	214.7
acier	
Fibre inf poutre acier	-224.9
Aciers passifs fibre sup	220.4
Aciers passifs fibre inf	207.1

- $I\sigma_{1,sup} + \sigma_{2,sup, charpente} + \sigma_{3,sup, charpente} I = 214.7 \le \sigma_{admissible_charpente} = 315 \text{ Mpa}$
- $I\sigma_{1,inf} + \sigma_{2,inf, charpente} + \sigma_{3,inf, charpente}I = -224.9 \le \sigma_{admissible charpente} = 315 \text{ Mpa}$
- $\sigma_{2,inf, passif} + \sigma_{3,inf, passif} = 220.4 \le \sigma_{admissible} = 434.78 \text{ MPa}$
- $\sigma_{2,\text{sup, passif}} + \sigma_{3,\text{sup, passif}} = 207.1 \le \sigma_{\text{admissible}} = 434.78 \text{ MPa}$

Nous constatons donc que la géométrie proposée pour la section sur appui satisfait les conditions imposée par l'Eurocode. Cette section étant plus économique que la sollicitation de base, nous choisissons cette dernière pour la zone sur appui

4.2 Justification vis-à-vis du cisaillement

On choisit à présent de travailler avec la section optimisée. Le cisaillement étant maximal au niveau des appuis, c'est dans les sections au niveau des appuis qu'on étudiera la résistance à l'effort tranchant.

Il s'agit dans un premier temps de réaliser une vérification plastique permettant de savoir si la section résiste au cisaillement. On trouve <u>VpIRd (MN)=28</u>

On s'intéresse par ailleurs à la résistance au voilement, puisque la section est de classe 3 et peut voiler avant d'arriver à plastification. On trouve Vrd (MN)=15,11

L'effort tranchant sollicitant calculé par ST1, au niveau de l'appui, est : Ved (MN)=9,264

Ved < Vrd < VplRd . La section est donc bien vérifiée au cisaillement.

Annexes

- Fichier texte de la modélisation ST1
- Caractéristiques des barres pour la première itération : sans béton, à long terme et à court terme
- Diagrammes du moment et de l'effort tranchant pour la première itération
- Feuille de calcul « ELU en travée »
- Feuille de calcul « ELU appui central » $\mathbf{1}^{\text{ère}}$ itération et $\mathbf{2}^{\text{ème}}$ itération
- Feuille de calcul « cisaillement »

```
OPTION PLANE
TITRE 'Calcul 1 Poutre mixte'
ŧ
NOEUD
1 0 0
2
 61.6 0
3 65,45 0
4 89.3 0
5 77 0
6 86.6 0
7 88.55 0
8 96.2 0
9 125 0
10 153.8 0
11 158.6 8
12 163.4 0
13 1/3 0
14 180.7 0
15 184.55 0
18 188.4 0
17 250 0
GENER 16 BARRE ID 1 1 DE 1 1 A 2 1
# definition des appuis
APPUL
1,5,13 DY
17 DX DY
#matériou motal
cons tout e 210000*1000 nu 0.33 ro 77 # poids vol on kN
ETUDE EFFORT DEPLA
tout SE C A 1 PAS 0.1
# CARACTERISTIONE DES BARRES
# métal seul
#caractoristique d'une soule poulte metallique avant prise du béton
CARA
                   BX 0.21 1Z 0.49 VY 1.65 WY 1.85
1,8,9,16
2,3,6,7,10,11,14,15 SX 0.31 TZ 0.65 VY 1.67 WY 1.83
                   SK 0.38 IZ 0.84 VY 1.71 WY 1.79
4,5,12,13
CHARG 1 'Poids propre Acter + Béton (môtal soul)'
POIDS PROPRE TOUT
                             # poids poutre acter kN
BARRE TOUT UNI FY -0.35*5.90*25 ↓ dalle béton kN
FIN
EXEC CHARG 1
#-----
# caracteristique mixte n=18
# offet long berme # ajout des superstructures
CARA
#zone non fissurée
                   SX 0.33 IZ 0.81 VY 2.36 WY 1.49
1,8,9,16
2,7,10,15
                   SX 0.43 TR 1.01 VY 2.21 WY 1.64
3,6,11,14
                   SK 0.41 12 0.65 VY 1.67 WY 2.18
#zone fissurée au niveau des appuis
```

4,5,12,13

SX 0.38 TZ 0.84 VY 1.71 WY 2.14

```
CHARG 2 'Superstructures maxi'
BARRE TOUT UNI FY -52.96*0.5 # charge * Cooff courbon car symblifque
FIN
EXEC CHARG 2
t----
+ charges instantamnés + ajout des charges mobiles
# caracteristique mixto n=6
CARA
*zone non Ilssurée
                SX 0.56 IZ 1.85 VY 2.90 WY 0.95
1,8,9,16
                SX 0.65 TZ 1.33 VY 2.72 WY 1.13
2,7,10,15
3, 6, 11, 14
                SX 0.31 12 0.65 VY 1.67 WY 2.18
#zone fissuros au niveau des appuis
                SX 0.38 77 0.84 VY 1.71 WY 2.14
4,5,12,13
largchaussee-11
TABLIER
zone trans
 1 larg largchaussee
barre 1 a 16
FIN
conv 1 'TS 1kN/essieu'
essieu
1 x1 0.0 poids 1 impact 0.4
 2 x1 1.2 poids 1 impact 0.4
larg 3
max_lile 1
4*****************************
coeft1=1,097
           # coefficient do courbon pour 1 poutre voie 1
conft2=0.661
            # voie 2
coeft3-0.177
           f voic 3
surch 1 'TS cara'
conv 1
pond (300*0,9*coeft1+200*.8*coeft2/100*.8*coeft3)
zone 1
fin
EXEC SURCH 1
coefvi-1.097
moefyr=0.452
poidudl={3*9*0.7*comfv1+5.6*2.5*1*coefvr}/largchaussee
ALG 1 'HDL'
 dens 0 poidud1
 dens 250 poidudl
```

surch 2 'UDL cara'

```
alg 1
 pend 1.0
 zone 1
fin
EXEC SURCH 2
CONV Z 'LMF3 - Convoi de fatigue en kN'
ESSIEU
1 XL 0.0 POLDS 120 IMPACT 0.40
2 XL 1.2 POIDS 120 IMPACT 0.40
3 ML 7.2 POTDS 120 IMPACT 0.40
4 XL 8.4 POIDS 120 IMPACT 0.40
FIN
KLMS'-0.6 # Coeff courbon
SURCH 10 'IMPS'
 CONV 2
FOND KLMF
ZONE 1
FIN
EXEC SUBCH 10
ENV 1 COMB 'charges permanentes'
charg 1
charg 2 1 0.7 # sucharges maxi - mini
fin
ENV 2 COMB 'surcharges caractéristiques'
surch 1 0 1
surch 2 0 1
tin
ENV 3 COMB 'surcharges Tréquentes'
surch 1 0 0.75
surch 2 0 0.4
fin
FNV 4 COMB 'ELS Caractéristique'
ENV I
ENV 2
Fin
ENV 5 COMB 'ELS Fréquent'
ENV 1
ENV 3
fin
FNV 6 COMB 'ELU fondamentale'
ENV 1 1 1.35
ENV 2 0 1.35
Fin
```

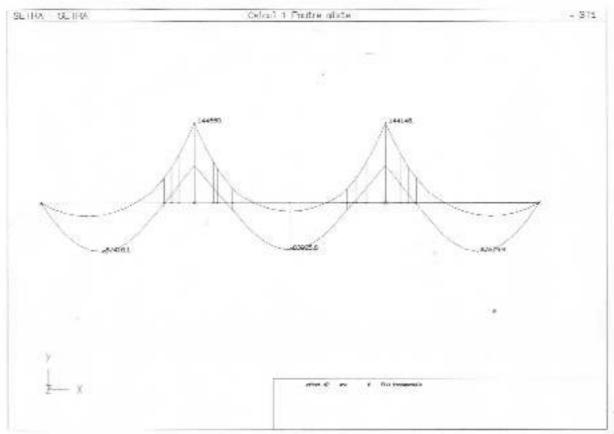
sortie 'effort.res' non pagine resu charg 1,2 barrs tout offort surch 1,2 barrs tout effort charg

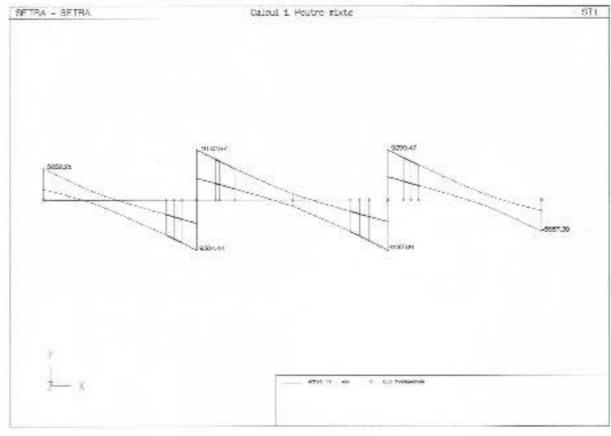
sortie 'appui.rom' non pagine romu charg 1,2 appui surch 1,2 appui tharg

sortie 'enveloppos.ros' non pagine resu onv 6 barre tout effort

FIN

barre	Sx (m2)	Iz (m4)	Vy (m)	Wy [m]				
1,8,9,16	0,19	0,42	1,66	1,84				
2,3,6,7,10,11,14,15	0,30	0,64	1,66	1,84				
4,5,12,13	0,36	08'0	1,65	1,85				
	Coef équivalence	н						
a barrie typisti	Proposition (1993)	I and an annual land	Therefore freely	the state of the last free bear	Management of the same	March of Street	The Charle	273
The second second	largear (m)	eparocar (ar)	fundularias	d cognition (m)	Widelife and	/±111 an 1511		
beton	00'0	00'0	00'0	3,50	00'0	00'0	00'0	0
gus allamas	1,10	50'0	90'0	3,48	0,19	00'0	99'0	9
ame	0,02	3,40	0,07	1,75	0,12	0,07	0,27	7
semelle inf	1,30	50'0	0,07	0,03	00'0	00'0	00'0	0
							0,94	ঘ
		Aire mixte :	0,19		0,31			
				: Spo sod	1,66	ltot (m4):	0,42	2
barre type 2								
	largeur (m)	(m) massieda	section (m²)	d cdg/fib.inf (m)	Moment stat	Inertie (m4)	2P×S+1	,q ₂
beton	00'0	0,00	000'0	3,500	000'0	00000	0,000	00
semelle sup	1,100	0,075	0,083	3,463	0,285	000'0	0,989	39
ame	0,035	3,350	0,117	1,750	0,205	0,110	0,469	65
semelle inf	1,300	5/00'0	860'0	0,038	400'0	0000	0,000	00
							1,458	89
		Aire mixte:	0,297	Comment of the Party of	0,495	TO THE PART OF THE		
				: Spo sod	1,564	(tot (m4):	0,635	35
Supre 1(De 3	100							
	(m) Isrgeur (m)	epaisseur (m)	Section (m²)	d'cdg/lib inf (m)	Moment stat	Inertie (m4)	1+5+d	60
beton	00'0	00'0	0,000	3,500	00000	0000'0 *	0000'0	00
semelle sup	1,100	001,0	0,110	3,450	0,380	0000	1,309	50
ame	0,035	3,300	0,116	1,750	0,202	0,105	0,459	69
semelle inf	1,300	0,100	0,130	0,050	0,007	000'0	00000	00
							1,768	000
		Aire mixte :	0,356		0,588	The second second		
				: Spos cod	1,654	Itot (m4):	0,795	32


Caractéristaques des barres : à long terme


0,73 0,99 0,54 0,78 ence 18 0,35 0,05 0,075 3,350 0,075 3,350 0,075 3,350 0,075 3,350 0,075 3,350 0,075 3,350 0,075 3,350 0,075 3,350 0,075 3,350 0,075 0,000	42 1,43 22 1,63 56 2,19 55 2,19 65 2,19 67 3,48 66 3,48			
0,41				
0,30				
0,34				
Coef équivalence 18 Isrgeur (m) epalisseur (m) U,10 0,05 U,30 0,350 U,100 0,350 U,100 0,350 U,100 0,350 U,300 0,075 U,300 0,000 U,100 0,000 U,300 0,000 U,000 U,000 U,000				
Largeur (m)				
Line Engeur (m) Engeur (m) 5,90 0,35 1,10 0,05 3,40 1,100 0,05 3,500 1,100 0,075 3,350 1,100 0,075 3,350 1,300 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,300 0,000 0,000 1,300 0,000 0,000 0,000 1,300 0,000 0				
5,90 0,35 1,10 0,05 2,02 3,40 1,30 0,05 1,100 0,350 1,100 0,350 1,100 0,075 1,100 0,075 1,300 0,075 1,300 0,000 1,100 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,000 0,000 1,100 0,000 1,100 0,000		Mornent stat	me tie (m4)	2P+5+1
1,10 0,05		0,42	0,02	1,57
5,900 0,055 1,100 0,055 1,100 0,075 1,300 0,075 1,300 0,075 1,100 0,005 1,100 0,005 1,300 0,075 1,300 0,005 1,300 0,005 1,300 0,005 1,300 0,000 1,300 0,000 1,100 0,000 1,100 0,000 1,100 0,000		0,19	0,00	0,66
1,30 0,05 1,100 5,900 0,350 0,350 0,350 0,350 1,100 0,075 0,075 1,300 0,000 0,000 0,000 0,000 1,300 0,000	1,75	0,12	0'03	0,27
Signate Aire mixte Signate Signate Signate Signate Signate Signate Signate Signate		0000	0,00	00'0
Signal epalsseur (m) Signal 0,350 0,350 0,350 1,100 0,075 1,300 0,000 0,000 0,000 0,000 1,300 0,000 0,	DE .	0.73		2,51
Signator March	t Spo sod	2,42	itet (m4):	6,73
5,900 0,350 1,100 0,075 1,300 0,075 1,300 0,000 1,100 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,300 0,000 1,000 0,000 1,100 0,000	n (m²) & cdg/Hb¹af (m)	Moment stat	Inertie (m4)	[P+5+1
1,100 0,075 0,035 3,350 1,300 0,075 0,000 0,000 1,100 0,000 1,300 0,075 0,035 3,350 1,300 0,075 1,300 0,000 0,000 0,000 1,100 0,000 1,100 0,000		0,422	0,021	1,570
3,350 1,30d 0,075 5,700 0,000 1,100 0,000 1,300 0,075 1,300 0,075 1,300 0,000 1,000 0,000 1,000 0,000 1,000 0,000		0,286	0,000	686'0
1,300 0,075 Are mixte: 4,000 0,000 1,100 0,000 1,300 0,000 1,300 0,000 0,000 0,000 1,100 0,000		0,205	0,110	0,459
Are mixte: Singeur m opaisseur (m) 0,000		0,004	0,000	0,000
Are mixte: 0,000 0,000 0,005 0,035 0,035 0,035 0,035 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000		0,000		3,029
Srgeur (m) opeliserur (m) 0,000 0,000 1,100 0,075 3,350 1,300 0,075 1,300 0,000 0,000 0,000 0,100 0,100 0,100 0,100	012	0,916		
Sugeur (m) - epaisseur (m) - 6,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	bos cdg:	2,224	tot (m/d):	0,991
0,000 0,000 1,100 0,075 0,035 3,350 1,300 0,075 Are mixte : Are mixte : 0,000 0,000 1,100 0,100	n/m³) dedgfibin/(m)	Moment stat	Inertie (m4)	1+2+9 ₁
1,100 0,075 5,035 3,350 1,300 0,075 Aire mixte : Aire mixte : 0,000 0,000 1,100 0,000	ŀ	00000	0,000	0000
0,300		0,286	0,000	0,989
1,300 b,075 Aire mote: Aire mote: b,000 b,000 1,100 b,100	1,750	0,205	0,110	0,469
Aire miste : largeur (m) opaliserur (m) 0,000 0,000 0,100	860,0 860	0,004	0,000	0,000
largeur (m) opalseeur (m) 0,000 0,000 0,000	2,0	0.400		1,458
largeur (m) epaisseur (m) 0,500 0,500	The same same	1 664	Boy Locks	2520
largeur (m) epalseeur (m) 0,000 0,000 3,100 0,100	- Stro cote	1,004	. Thurtun	0000
0,000 0,000	n m d cdg/fib inf (m) .	Moment stat	(nertie (rr4)	2P.5+1
1,100 0,100	3,500	00000	0000'0	0,000
		0,380	000'0	1,309
題		0,173	060'0	0,393
semelle Inf 1,300 0,100 0,130	30 0,050	0,007	000'0	0,000
Aira minte	30	0		1,703
		020 4	Control of the Control	0000

Carachénistiques des bames à court terme.

(m) Moment stat 1,26 0,19 0,12 0,00 1,265 0,205 0,205 0,004 1,759 2,743 1,759 2,743 1,759 2,743 1,759 0,000 0,285 0,000	barre	Sk (m2)	(z/m/z)	(m) /v	W(V (m)				
D_64 1.30 2.74 1.11 1.15 2.70	3,8,9,16	0,53	0,94	2,96	0,89				
Coef feature leng 1,65 2,10	2,7,10,15	D,64	1,30	2,74	1,11				
Core feature Core	3,6,11,14	0,30	0,64	1,65	2,15				
Coef Squire land Coef Squire	4,5,12,13	0,34	0,78	1,65	2,20				
Sample S		Coef équivalence							
Signature Margeure	pane pres								
1,26		larger (m)	epaisseur (m)	section (m²)	d cog/Hb inf (m)	Morrent stat	mertie (m4)	+5.25	
1,10 0,005 3,48 0,19 1,10 0,005 0,07 1,75 0,12 1,15 0,005 0,007 1,75 0,12 1,150 0,005 0,008 0,009 1,100 0,005 0,008 0,008 1,100 0,005 0,008 0,008 1,100 0,005 0,008 0,008 1,100 0,007 0,008 0,008 1,100 0,007 0,008 0,008 1,100 0,007 0,008 0,008 1,100 0,007 0,008 0,008 1,100 0,007 0,008 0,008 1,100 0,007 0,000 1,100 0,007 0,000 1,100 0,007 0,000 1,100 0,007 0,000 1,100 0,000 1,100 0,000	heton	5,90	0,35	0,34	3,58	1,26	20'0	4,67	
1,350 3,45 0,07 1,75 0,12	dos ellectos	1,10	90'0	90'0	3,48	0,19	0000	99'0	
First 1,30 0,05 0,07 0,03 0,00	8 mg	0,02	3,40	0,07	1,75	0,12	20'0	0,27	
	semelle nf	1,30	50'0	0,07	0,03	00/0	00'0	0,00	
			Men only	0		0 0		5,61	
			Alle mate.	66'5	pos cdg:		tot (m4):	0,54	
largeur(m) section(m²) decig/fib inf m Woment stat 5,900 0,350 0,344 3,675 1,265 1,100 0,075 0,083 3,468 0,286 1,100 0,075 0,088 3,468 0,286 1,200 0,075 0,098 0,038 0,009 1,200 0,075 0,098 0,038 0,000 1,200 0,000 0,000 3,500 0,000 1,200 0,075 0,083 3,463 0,286 1,200 0,075 0,083 3,463 0,286 1,200 0,075 0,083 3,463 0,286 1,200 0,075 0,088 3,463 0,205 1,200 0,075 0,098 0,117 1,750 0,205 1,200 0,075 0,098 0,038 0,000 1,300 0,000 0,000 0,000 1,300 0,000 0,100 0,100 1,300 0,000 0,100 0,130 0,050 1,300 0,000 0,130 0,050 1,300 0,000 0,130 0,050 1,300 0,000 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 0,050 1,300 0,130 0,130 1,300 0,130 0,130 0,050 1,300 0,130 0,130 1,300 0,130 0,130 1,300 0,130 0,130 1,300 0,130 0,130 1,300 0,130 0,130 1,300 0,130 0,130 1,300 0,130 0,130 1,300 0,130 0,130 1,300 1,300 0,130 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,	bure type 2	-							
5,900 0,350 0,344 3,675 1,265 esup 1,100 0,075 0,083 3,463 0,286 e mit 1,100 0,075 0,083 3,463 0,286 e mit 1,1300 0,075 0,083 0,038 0,083 e mit 0,000 0,000 3,500 0,000 3,743 0,000 e sup 1,100 0,000 0,000 3,463 0,286 0,000 e sup 1,100 0,007 0,003 3,463 0,286 0,000 e mit 1,300 0,075 0,083 3,463 0,205 0,000 e mit 1,300 0,075 0,083 3,463 0,000 0,000 e mit 1,300 0,075 0,083 3,463 0,000 0,000 e mit 1,300 0,075 0,098 0,038 0,000 0,000 e sup 0,000 0,000 0,000 0,000 0,000 0,000		largeur (m)	[m] inessieda	section (m2)	d cdg/fib inf (m)	Woment stat	Inertie [m4]	24.5+1 =	#
e sup 1,100 0,075 0,083 3,463 0,286 e inf 1,300 0,075 0,038 0,038 0,004 Aire mixte: 0,641 pos cdg: 2,743 e inf 1,300 0,075 0,083 3,463 0,000 e sup 1,300 0,075 0,083 3,463 0,297 e inf 1,300 0,075 0,088 3,463 0,000 e sup 0,000 0,075 0,088 3,463 0,297 for mixte: 0,000 0,000 0,000 0,000 e sup 0,000 0,000 0,000 0,000 0,000 e inf 1,300 0,000 0,000 0,000 0,000 0,000 e sup 0,000 0,000 0,000 0,000 0,000 0,000 e inf 1,300 0,000 0,000 0,000 0,000 0,000 e inf 1,300 0,000 0,000 0,000 0,000 0,000 0,000 e inf 1,300 0,000 0,000 0,000 0,000 0,000 0,000 e inf 1,300 0,000 0,	hetton	006'5	0,350	0,344	3,675	1,265	0,021	4,569	
## 0,035 3,350 0,117 1,750 0,205 ### 1,300 0,075 0,083 0,038 0,004 #### 1,300 0,075 0,083 3,463 0,205 ##### 0,000 0,000 0,000 3,463 0,205 ###################################	semel e sup	1,100	0,075	0,083	3,463	0,286	0,000	686,0	
Figure 1,300 0,075 0,098 0,038 0,009 After mixte: 0,644 pos cdg: 2,743 Figure 0,000 0,000 0,000 3,500 0,00	ame	0,035	3,350	0,117	1,750	0,205	0,110	0,469	
Sture Sture State Stat	semelle inf	1,300	0,075	0,038	0,038	0,004	00000	d00'0	
Aire mixter: 0,641 poscidg: 2,743 Integration possisseurith poscidg: 2,750 Integration possisseurith poscidg: 2,750 Integration possisseurith possisseurith poscidg: 2,750 Integration possisseurith possiss								6,127	
Integeur (m) Section (m²) dedg/flb inf (m²) Moment stat			Aire mixte:	0,641		1,759			
Figure (m) Epaisseur (m) Section (m²) dicdg/fib Inf (m) Moment stat	The state of the s				bosodi	2,743	tot (m4);	1,302	
0,000 0,000 0,000 3,500 0,285 1,100 0,0075 0,083 3,463 0,285 1,300 0,075 0,098 0,117 1,750 0,285 1,300 0,075 0,098 0,008 0,000 1,100 0,100 0,100 0,100 0,173 1,500 0,099 1,750 0,173 1,300 0,100 0,130 0,050 1,300 0,130 0,130 0,559 1,300 0,130 0,130 0,550 1,300 0,130 0,130 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550 0,550 1,300 0,130 0,550		largeur (m)	epaisseur [m]	section(m²)	d cde/fib Inf Imp	Moment stat	Ingrite (m4)	4P*S+1	
1,100 0,075 0,083 3,463 0,286 1,300 0,075 0,098 0,003 4,300 0,075 0,088 0,000 1,100 0,100 0,100 0,000 1,300 0,099 1,750 0,738 0,003 3,300 0,099 1,750 0,733 1,300 0,130 0,130 0,055 1,300 0,130 0,130 0,559	beton fissurif	00000	00000	0000	3,500	0,000	0,000	000'0	
1,300 0,035 0,098 0,038 0,004 4,300 0,005 0,009 1,750 0,205 Aire mixte: 0,297 5,004 largeur (m) epatiseur (m) section (m²) diode/fills linf (m², Moment, stat 0,000 0,000 0,000 0,380 0,380 0,000 0	genielle sup	1,100	0,075	0,083	3,463	0,285	0,000	686'Q	
1,300 0,075 0,098 0,038 0,004 Aire mixte: 0,297 50495 aigeur (m) epaisseur (m) section (m²) diodg/fila Inf (m², Moment stat 0,000 0,000 1,100 0,380 0,110 3,450 0,173 0,173 0,130 0,050 0,173 0,173 0,130 0,050 0,007	ame	0,035	3,350	0,117	1,750	0,205	0,110	0,469	
Aire mixte : 0,297	semelle in .	1,300	0,075	0,058	0,038	0,004	0,000	0000	
largeur (m) epatiseur (m) section (m²) diodg/fila linf (m²) Moment, stat 6,000 0,000			Aire minte	0 363		3,305		1,458	
largeur (m) epatiseur (m) section (m²) dicdg/falinf (m²) Moment stat (0,000 d,000 d,000 d,100 0,380 0,380 0,030 d,009 1,750 0,173 0,173 0,130 0,050 0,055 0,559					≝ Sab sod⊭	1,664	for (m4):	563,0	
0,000 0,000 0,000 1,100 0,100 0,110 1,750 0,380 0,030 3,300 0,099 1,750 0,173 1,300 0,130 0,007	No. of the last of	largeur (m)	epaisseur (m)	section (m²)	3 cdg/fis inf (m)	Moment stat	Inerte (m4)	P.5-1	
1,150	beton fissuré	0000	0,000	0,000	3,500	000'0	0,000	0,000	
6,030 3,300 0,099 1,750 0,173 1,300 0,130 0,130 0,007	semelle sun	1,150	0,100	0,110	3,450	0,380	0,000	1,309	
1,300 0,007 0,007 Aire mixte: 0,339 0,559	ame	0,030	3,300	660'0	1,750	0,173	0,090	0,393	
e: 0,559	sericile inf	1,300	0,100	0,130	0,050	0,007	0,000	00000	
			Aire mister	0.339		0 558		1,703	
					- proceeds	1 650	drot (m&)	0.780	

Diagrammes du moment et effort banchant l'ére utération

Houl classe de section en trasse classification 10 EU

Données

Acter	
Ss(Mpa)	210000
Séton	
fck (Mpa)	35
fcm (Mpa)	43
Ecm(Mpa)	34077
Données structure	
Dolle	
encol(m)	2,8
lenco2(m)	2,8
bc(m)	8,8
tolmi	0,35
Poutre	
Trovée	
h/s/m/	13.1
pų.	1,3
	3,5
hw	3,42
dist	5000
THE STATE OF THE S	0,045
twt	0,02
fy(tfst) (Mpa)	335
fyithti (Mpa)	335
Fortunt (Mina)	376

fy(twt) (Mga)
Détermination de l'ANP

Béton F4	40,36
Semmelle sup F1	16,58
Seme a Inf FZ	19,50
Arrie F3	23,529
Efforts de traction Ft	50,33
2+8	43,13
2º soutre métallique	11,65

Postton de l'ANP

		2727
--	--	------

Vérification à l'ELU (en MN.m)

82,09	Med (MN.m) soll
115,63	Mpt, Rd (MN, m)
8,21	Moment dù au b
40,58	Moment dù à Lât
0,19	Morment dû ê la 🛊
57,65	Moment dù a la 🛊

1 enc , tenation

3500 100 100 315 315 345 5,9 1300 210000 34077 Données structure Aciers possifs fsk(Mpa) fy(tf) (Mpa) fy(tw) (Mpa) Appail type 3 fy(tfs) (Mpa) lenco1(m) lenco2(m) fck (Mps) fcm (Mpa) Ecm(Mps) Es(Mpa) Données bfs(mm) Poutre Beton pc(m) to (m) Dolle Acler MI

Détermination de la classe de la section

Semelle Inférieure

semene interieure		
	0,864	
Limites de classes	Borne inf	Borne sup
Classe 1		77.77
Classe 2	7,77	8,64
Classe 3	8,64	12,09
(bf+zw)/ (2*tf1)	6,325	

Ame

10000	Effort(MN)
Aciers passits F4	10,68
Semelle sup F1	34,65
Semelle inf F2	40,95
Ame F3	39,85
Ft	63,03
F2+F3	80.80

Position de l'ANP dans l'âme

x(m) a partir du h

94,2857,429 0,825 0,825 0,826 296,2 296,2 0,961	0,000
0,825 1,44 51,44 296,2 0,961	571429
51,44 51,44 296,2 0,961	0,825
classes	Bernestup
Classes	66,035
sassejo	51,44
	284,6
Je classes	296,2
Unites de classes Casso 3	-0,961
Classe 3	所 · 編 · 音樂 · 音樂
	58,21833887
Classes	日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日

Vérification à l'ELU

	Critères	
(ed _M)dnso	-284,60 fyltfsl (Mpa)	315
dinf(Mpa)	296,20 fyltfi) (Mpal	315
ds(Mpa)	-287,70 fs (Mpa)	900

2 and it into

Acier	
Es[Mpa)	210000
Aciers possifs	
fsk(Nipa)	005
VS.	1,15
Béton	200
fek (Mpa)	35
fem (Mpa)	433
Ecm(Mpa)	34077
Données structure	
Dalle	
lenco1/m)	2,8
lenco2(m)	2,8
bc(m)	5,9
tc (m)	0,35
Postre	
Appul type 3	
tris/mm)	1100
ofi	1300
- B	3200
hw.	3310
tfs	56
14	95
tw	35
(kdM) (kdM)	315
fyjtří (Mps)	315
fy(tw) (Mpa)	345

Détermination de la classe de la section

semene interieure		
3	0,864	
Limites de classes	Borne Inf	Borne sup
Classe 1		77,77
Classe 2	77.7	
Classe 3	8,64	12,09
(bf-tw)/ (2"tft)	6,657894737	

Ame

Acters passifis F4 10.68 Semelle sup F1 32,92 Semelle inf F2 38,90 Ame F3 39,97 Ft 61,24		Effort(MN)
Semelle sup F1 32,92 Semelle inf F2 38,90 Ame F3 19,97 Ft 61,24 F2+F3 78,87		10,68
Semelle inf F2 38,90 Ame F3 39,97 Ft 61,24 F2+F3 78,87	Semelle sup F1	32,92
Ame F3 19,97 Ft 61,24 F2+F3 78,87	Semelle inf F2	38'86
Ft 61,24 F2-F9 78,87	Ame F3	19,91
F2+F3 78,87	Ft	61,24
	F2+F3	78,87

Position de l'ANP dans l'âme ximi a partir du h

ximi a partir du il	1,00	
25	0,559	
hw/tw	94,57142857	
E .	0,825	
Limitus des classi Bar	ne inf	Borne sup
Classe 2		80,08
Classe 3	76,74	
osup(Mpa)	-289,9	
oinf(Mpa)	73,505	
	-0,955	
Limites de classes	60	
Classe 3	STATE OF THE PARTY OF	97,65386492
Classe 4	大学 野田 田田	

Vérification à l'ELU

	Critères	
(ecM)(Mos)	-289,90 fyttist (Mpa)	315
oin(Mps)	303,67 fyltti) (Mpa)	315
os[Mpa]	-287,70 fs (Moa)	005

|--|

2,8 2,8 6,2 0,35 Données structure Dolle lencol(m) lencol(m) up(m) tc (m)

2000			
Trovée	500000	Appui type 3	Type 2
pts(mm)	1100	1100	1100
94	1300	1300	1300
4	3200	3500	3500
hw	3410	3310	3350
tfst	45 tfs	56	75
tfit	45 拍	96	75
twt	20 bw	35	30

Calcul Ved (ST1) 9,264

Vérification de résistance au cisaillement

Ved (MN)

section sur appui	
y(twi(Mpa)	345
/pikd (MM)	28
/ed/My)	9,261

Ħ	
men	
0	
-	
-20	
Ĭ	
8	
ш	
snas	
8	
16	
-	
F	
-	
lemen	
E	
-	
120	
ğ	
5	
-	
20	
non	
-	
3	
큠	
=	
=	
0	
D.	
12	
u	
4	
-	
·ci	
3	
-	

a(m)	6,15
6(1)	0,825
ti.	6,50
hw/tw	76,59
31/n etc	54,35

Calcui de Ybro

petMpat	21,221
ccr(Mpa)	137,91
A.W.	1,20
143	0,72
Vbrd(MN)	11,11